256 CHAPTER 5 Series and Differential Equations
This is a fairly simple integration: using the substitution (u= lnx) one
first computes the indefinite integral
∫ dx
xlnpx=
1
(1−p)xlnpx.
Therefore,
∫∞
2dx
xlnpx= lima→∞Ñ
1
(1−p)xlnpxé∣
∣∣
∣∣a
2=
1
2(1−p) lnp 2.
Exercises
- For each improper integral below, compute its value (which might
be±∞) or determine that the integral does not exist.
(a)∫∞
2dx
√
x− 2(b)∫ 1
− 1dx
√
1 −x^2
(c)∫∞
2
√ dx
x^2 − 4
(d)∫ 1
0 lnxdx- Letk≥1 andp >1 and prove that
∫∞
1 sink( 2 πxp)
dx <∞.(Hint:note that ifxp>4 then sink(
2 π
xp)
≤sin(
2 π
xp)
<
2 π
xp.)
- Compute
xlim→∞
∫∞
0 e−tcos(xt)dt.- LetA, B be constants,A >0. Show that
∫∞
0 e
−AtsinBtdt= B
A^2 +B^2.
- Define the function
Π(x) =
1 if|x|≤^12 ,
0 otherwise.