SECTION 5.1 Quick Survey of Limits 255
The definitions of these improper integrals are in terms of limits.
For example
∫∞
0 f(x)dx = limb→∞
∫b
a f(x)dx
∫∞
−∞f(x)dx = a→−∞lim
∫ 0
a f(x)dx+ limb→∞
∫b
0 f(x)dx.
Likewise, for example,
∫ 1
0
dx
xp
= lim
a→ 0 +
∫ 1
a
dx
xp
,
∫ 3
1
dx
x− 2
= lima→ 2 −
∫a
1
dx
x− 2
+ limb→ 2 +
∫ 3
b
dx
x− 2
.
Relative to the above definition, the following is easy.
Theorem. We have
∫∞
1
dx
xp
=
1
p− 1
ifp > 1
∞ ifp≤ 1.
.
Proof. We have, ifp 6 = 1, that
∫∞
1
dx
xp
= lima→∞
x^1 −p
1 −p
∣∣
∣∣
∣
a
1
= lima→∞
Ñ
a^1 −p
1 −p
−
1
1 −p
é
=
1
p− 1
ifp > 1
∞ ifp < 1.
Ifp= 1, then
∫∞
1
dx
x
= lima→∞lnx
∣∣
∣∣
∣
a
1
= lima→∞lna = ∞.
Example. Compute the improper integral
∫∞
2
dx
xlnpx
, where p >1.