SECTION 5.1 Quick Survey of Limits 261
Exercises
- Using l’Hˆopital’s rule if necessary, compute the limits indicated
below:
(a) limx→ 1
x^3 − 1
4 x^3 −x− 3
(b) limx→ 1
cos(πx/2)
» (^3) (x−1) 2
(c) limx→∞
2 x^2 − 5 x
x^3 −x+ 10
(d) lim
θ→ 0
sin 3θ
sin 4θ
(e) lim
θ→ 0
sinθ^2
θ
(f) lim
θ→π/ 2
1 −sinθ
1 + cos 2θ
(g) limx→∞
ln(x+ 1)
log 2 x
(h) lim
x→ 0 +
(lnx − ln sinx) (Hint:
you need to convert this
“∞ − ∞” indeterminate
form to one of the forms dis-
cussed above!)
(i) limx→∞(ln 2x−ln(x+ 1)).
(j) limx→∞
(
1 +
4
x
)x
(k) limx→∞
Ç
1 +
a
x
åx
(l) lim
x→ 1
x^1 /(x−1)
(m) limx→∞x^3 e−x
(n) lim
x→ 0 +
xae−x, a > 0
(o) lim
x→ 0 +
lnxln(1−x)
(p) lim
x→ 1 −
lnxln(1−x) (Are (o)
and (p) really different?)
- Compute
∫∞
0 xe
− 2 xdx.
- Let n be a non-negative integer. Using mathematical induction,
show that
∫∞
0 x
ne−xdx=n!.
- (The (real)∫ Gamma function) Let z > 0 and define Γ(z) =
∞
0 x
z− (^1) e−xdx. Show that
(a) Γ(n) = (n−1)! for any positive integern;
(b) Γ(z) exists (i.e., the improper integral converges) for allz >0.
- (Convolution) Given functionsf andgdefined for allx∈ R, the
convolutionoff andgis defined by
f∗g(x) =
∫∞
−∞f(t)g(x−t)dt,