SECTION 5.2 Numerical Series 275
nlim→∞an+1
an= limn→∞Å(n+2) 3
(n+1)!ã
Å(n+1) 3
n!ã= limn→∞
(n+ 2)^3
(n+ 1)(n+ 1)^3= 0.
Therefore,
∑∞
n=1(n+ 1)^3
n!converges.Example 8. Consider the series
∑∞
n=1n^2
3 n. We have
nlim→∞an+1
an= limn→∞Å(n+1) 2
3 n+1ã
(n 2
3 n)= limn→∞(n+ 1)^2
3 n^2=
1
3
< 1.
It follows, therefore, that
∑∞
n=1n^2
3 nalso converges.Example 9. Consider the series
∑∞
n=1n!
2 n. We have
nlim→∞an+1
an= limn→∞Å(n+1)!
2 n+1ã
(n!
2 n)= limn→∞n+ 1
2=∞,
which certainly proves divergence.
Exercises
- Test each of the series below for convergence.
(a)∑∞
n=1n+ 2
n^2 + 10n (b)∑∞
n=0n^2 −n+ 2
n^4 +n^2 + 1