Advanced High-School Mathematics

(Tina Meador) #1

SECTION 6.1 Discrete Random Variables 335


E(X) =

max∑{n,k}
m=0

m

Än
m

äÄN−n
k−m

ä
ÄN
k

ä.

We can calculate the above using simple differential calculus. We
note first that


[d

dx

(x+ 1)n

]
(x+ 1)N−n=n(x+ 1)N−^1 =

n
N

d
dx

(x+ 1)N.

Now watch this:


∑N


k=0


(∑n

m=0

m

(
k
m

)(
N−n
k−m

))
xk =

∑n
m=0

m

(
n
m

)
xm·

N∑−n
p=0

(
N−n
p

)
xp

Ç
this takes
some thought!

å

=

ñ
xdxd(x+ 1)n

ô
(x+ 1)N−n

= xn
N

d
dx
(x+ 1)N

= Nn

∑N
k=0

k

(
N
k

)
xk;

equating the coefficients ofxkyields

∑n
m=0

m

Ñ
n
m

éÑ
N−n
k−m

é
=
nk
N

Ñ
N
k

é
.

This immediately implies that the mean of the hypergeometric distri-
bution is given by


E(X) =

nk
N

.

Turning to the variance, we have

E(X^2 ) =

∑n
m=0

m^2

Än
m

äÄN−n
k−m

ä
ÄN
k

ä.

Next, we observe that

Free download pdf