SECTION 6.1 Discrete Random Variables 337
Var(X) = E(X^2 )−E(X)^2
=
n(n−1)k(k−1)
N(N−1)
+
nk
N
−
(nk
N
) 2
=
nk(N−n)(N−k)
N^2 (N−1)
6.1.8 The Poisson distribution
The Poisson random variable can be thought of as the limit of a
binomial random variable in the following sense. First of all, assume
thatY is the binomial random variable which measures the number of
successes in n trials and where the probability of each trial is p. As
we saw above, the mean of this random variable isμY = np. Now,
rather than limiting the number of trials, we take the limit asn→∞
but holding fixed the meanμ=μY. We call the resulting random
variable thePoisson random variable with meanμ. If we denote
this byX, then the distribution ofXis computed as follows:
P(X=k) = limn→∞
Ñ
n
k
é
pk(1−p)n−k
= limn→∞
Ñ
n
k
éÇ
μ
n
åkÇ
1 −
μ
n
ån−k
(sinceμ=np)
= limn→∞
n(n−1)···(n−k+ 1)
k!
Çμ
n
åkÇ
1 −
μ
n
ån−k
= limn→∞
n(n−1)···(n−k+ 1)
nk
Ñ
μk
k!
éÇ
1 −
μ
n
ån−k
=
Ñ
μk
k!
é
nlim→∞
Ç
1 −
μ
n
ån−k Ç
since limn→∞
n(n−1)···(n−k+ 1)
nk = 1
å
=
Ñ
μk
k!
é
nlim→∞
Ç
1 −
μ
n
ånÇ
1 −
μ
n
å−k
=
Ñ
μk
k!
é
nlim→∞
Ç
1 −
μ
n
ån