Nat. Neurosci. 23 , 819–831 (2020). doi:10.1038/
s41593-020-0637-3; pmid: 32424285
- S. O. Spitzeret al., Oligodendrocyte Progenitor Cells Become
Regionally Diverse and Heterogeneous with Age.Neuron
101 , 459–471.e5 (2019). doi:10.1016/j.neuron.2018.12.020;
pmid: 30654924 - Y. Kamen, H. Pivonkova, K. A. Evans, R. T. Káradóttir,
A matter of state: Diversity in oligodendrocyte lineage
cells.Neuroscientist1073858420987208 (2021).
doi:10.1177/1073858420987208; pmid: 33567971 - T. Xuet al., Rapid formation and selective stabilization of
synapses for enduring motor memories.Nature 462 ,
915 – 919 (2009). doi:10.1038/nature08389; pmid: 19946267 - T. Czopka, C. Ffrench-Constant, D. A. Lyons, Individual
oligodendrocytes have only a few hours in which to generate
new myelin sheaths in vivo.Dev. Cell 25 , 599–609 (2013).
doi:10.1016/j.devcel.2013.05.013; pmid: 23806617 - R. J. McDonald, N. M. White, A triple dissociation of memory
systems: Hippocampus, amygdala, and dorsal striatum.
Behav. Neurosci. 107 ,3–22 (1993). doi:10.1037/0735-
7044.107.1.3; pmid: 8447956 - A. J. Gruber, R. J. McDonald, Context, emotion, and the
strategic pursuit of goals: Interactions among multiple brain
systems controlling motivated behavior.Front. Behav.
Neurosci. 6 , 50 (2012). doi:10.3389/fnbeh.2012.00050;
pmid: 22876225 - H. O. Gautieret al., Neuronal activity regulates remyelination
via glutamate signalling to oligodendrocyte progenitors.
Nat. Commun. 6 , 8518 (2015). doi:10.1038/ncomms9518;
pmid: 26439639 - B. D. Trapp, A. Nishiyama, D. Cheng, W. Macklin,
Differentiation and death of premyelinating oligodendrocytes
in developing rodent brain.J. Cell Biol. 137 , 459–468 (1997).
doi:10.1083/jcb.137.2.459; pmid: 9128255 - A. C. Geraghtyet al., Loss of Adaptive Myelination
Contributes to Methotrexate Chemotherapy-Related
Cognitive Impairment.Neuron 103 , 250–265.e8 (2019).
doi:10.1016/j.neuron.2019.04.032; pmid: 31122677 - K. D. Micheva, M. Kiraly, M. M. Perez, D. V. Madison,
Conduction Velocity Along the Local Axons of Parvalbumin
Interneurons Correlates With the Degree of Axonal
Myelination.Cereb. Cortex 31 , 3374–3392 (2021).
doi:10.1093/cercor/bhab018; pmid: 33704414 - M. Deschênes, P. Landry, Axonal branch diameter and
spacing of nodes in the terminal arborization of identified
thalamic and cortical neurons.Brain Res. 191 , 538– 544
(1980). doi:10.1016/0006-8993(80)91302-5; pmid: 7378769 - S. Koudelkaet al., Individual Neuronal Subtypes Exhibit
Diversity in CNS Myelination Mediated by Synaptic Vesicle
Release.Curr. Biol. 26 , 1447–1455 (2016). doi:10.1016/
j.cub.2016.03.070; pmid: 27161502 - M. Zonouziet al., Individual Oligodendrocytes Show Bias for
Inhibitory Axons in the Neocortex.Cell Rep. 27 , 2799–2808.e3
(2019). doi:10.1016/j.celrep.2019.05.018; pmid: 31167127 - B. Emeryet al., Myelin gene regulatory factor is a critical
transcriptional regulator required for CNS myelination.
Cell 138 , 172–185 (2009). doi:10.1016/j.cell.2009.04.031;
pmid: 19596243 - L. R. Squire, L. Genzel, J. T. Wixted, R. G. Morris, Memory
consolidation.Cold Spring Harb. Perspect. Biol. 7 , a021766
(2015). doi:10.1101/cshperspect.a021766; pmid: 26238360
74. E. A. Gouldet al., Mild myelin disruption elicits early
alteration in behavior and proliferation in the subventricular
zone.eLife 7 , e34783 (2018). doi:10.7554/eLife.34783;
pmid: 29436368
75. M. A. Jeffrieset al., ERK1/2 Activation in Preexisting
Oligodendrocytes of Adult Mice Drives New Myelin Synthesis
and Enhanced CNS Function.J. Neurosci. 36 , 9186– 9200
(2016). doi:10.1523/JNEUROSCI.1444-16.2016;
pmid: 27581459
76. R. Kawaiet al., Motor cortex is required for learning but not
for executing a motor skill.Neuron 86 , 800–812 (2015).
doi:10.1016/j.neuron.2015.03.024; pmid: 25892304
77. P. M. Schalomon, D. Wahlsten, Wheel running behavior is
impaired by both surgical section and genetic absence of the
mouse corpus callosum.Brain Res. Bull. 57 , 27–33 (2002).
doi:10.1016/S0361-9230(01)00633-5; pmid: 11827734
78. A. E. Papale, B. M. Hooks, Circuit changes in motor cortex
during motor skill learning.Neuroscience 368 , 283– 297
(2018). doi:10.1016/j.neuroscience.2017.09.010;
pmid: 28918262
79. D. Spampinato, P. Celnik, Temporal dynamics of cerebellar
and motor cortex physiological processes during motor skill
learning.Sci. Rep. 7 , 40715 (2017). doi:10.1038/srep40715;
pmid: 28091578
80. J. M. Galea, A. Vazquez, N. Pasricha, J. J. de Xivry, P. Celnik,
Dissociating the roles of the cerebellum and motor cortex
during adaptive learning: The motor cortex retains what the
cerebellum learns.Cereb. Cortex 21 , 1761–1770 (2011).
doi:10.1093/cercor/bhq246; pmid: 21139077
81. R. G. Morris, P. Garrud, J. N. Rawlins, J. O’Keefe, Place
navigation impaired in rats with hippocampal lesions.Nature
297 , 681–683 (1982). doi:10.1038/297681a0; pmid: 7088155
82. C. V. Vorhees, M. T. Williams, Assessing spatial learning
and memory in rodents.ILAR J. 55 , 310–332 (2014).
doi:10.1093/ilar/ilu013; pmid: 25225309
83. P. Tovote, J. P. Fadok, A. Lüthi, Neuronal circuits for fear
and anxiety.Nat. Rev. Neurosci. 16 , 317–331 (2015).
doi:10.1038/nrn3945; pmid: 25991441
84. T. Kitamuraet al., Engrams and circuits crucial for systems
consolidation of a memory.Science 356 , 73–78 (2017).
doi:10.1126/science.aam6808; pmid: 28386011
85. T. Abel, K. M. Lattal, Molecular mechanisms of memory
acquisition, consolidation and retrieval.Curr. Opin. Neurobiol.
11 , 180–187 (2001). doi:10.1016/S0959-4388(00)00194-X;
pmid: 11301237
86. G. Buzsáki, The hippocampo-neocortical dialogue.
Cereb. Cortex 6 , 81–92 (1996). doi:10.1093/cercor/6.2.81;
pmid: 8670641
87. G. Girardeau, M. Zugaro, Hippocampal ripples and memory
consolidation.Curr. Opin. Neurobiol. 21 , 452–459 (2011).
doi:10.1016/j.conb.2011.02.005; pmid: 21371881
88. R. J. Smeyneet al., fos-lacZ transgenic mice: Mapping sites
of gene induction in the central nervous system.Neuron
8 , 13–23 (1992). doi:10.1016/0896-6273(92)90105-M;
pmid: 1730004
89. S. Campeauet al., Induction of the c-fos proto-oncogene in
rat amygdala during unconditioned and conditioned fear.
Brain Res. 565 , 349–352 (1991). doi:10.1016/0006-8993(91)
91669-R; pmid: 1842702
90. T. Barron, J. Saifetiarova, M. A. Bhat, J. H. Kim, Myelination of
Purkinje axons is critical for resilient synaptic transmission in
the deep cerebellar nucleus.Sci. Rep. 8 , 1022 (2018).
doi:10.1038/s41598-018-19314-0; pmid: 29348594
- J. H. Kim, R. Renden, H. von Gersdorff, Dysmyelination of
auditory afferent axons increases the jitter of action potential
timing during high-frequency firing.J. Neurosci. 33 ,
9402 – 9407 (2013). doi:10.1523/JNEUROSCI.3389-12.2013;
pmid: 23719808 - S. E. Kim, K. Turkington, C. Kushmerick, J. H. Kim, Central
dysmyelination reduces the temporal fidelity of synaptic
transmission and the reliability of postsynaptic firing
during high-frequency stimulation.J. Neurophysiol. 110 ,
1621 – 1630 (2013). doi:10.1152/jn.00117.2013;
pmid: 23843435 - M. Makinodan, K. M. Rosen, S. Ito, G. Corfas, A critical period
for social experience-dependent oligodendrocyte maturation
and myelination.Science 337 , 1357–1360 (2012).
doi:10.1126/science.1220845; pmid: 22984073 - J. Liuet al., Clemastine Enhances Myelination in the
Prefrontal Cortex and Rescues Behavioral Changes in Socially
Isolated Mice.J. Neurosci. 36 , 957–962 (2016). doi:10.1523/
JNEUROSCI.3608-15.2016; pmid: 26791223 - M. Swire, Y. Kotelevtsev, D. J. Webb, D. A. Lyons,
C. Ffrench-Constant, Endothelin signalling mediates
experience-dependent myelination in the CNS.eLife 8 ,
e49493 (2019). doi:10.7554/eLife.49493; pmid: 31657718 - A. Teissieret al., Early-life stress impairs postnatal
oligodendrogenesis and adult emotional behaviour through
activity-dependent mechanisms.Mol. Psychiatry 25 ,
1159 – 1174 (2020). doi:10.1038/s41380-019-0493-2;
pmid: 31439936 - D. Koshiyamaet al., White matter microstructural alterations
across four major psychiatric disorders: Mega-analysis study
in 2937 individuals.Mol. Psychiatry 25 , 883–895 (2020).
doi:10.1038/s41380-019-0553-7; pmid: 31780770 - B. Zhaoet al., Common genetic variation influencing human
white matter microstructure.Science 372 , eabf3736 (2021).
doi:10.1126/science.abf3736; pmid: 34140357 - B. Emery, Regulation of oligodendrocyte differentiation and
myelination.Science 330 , 779–782 (2010). doi:10.1126/
science.1190927; pmid: 21051629 - R. Schurr, A. A. Mezer, The glial framework reveals white-
matter fiber architecture in human and primate brains.
Science 374 , 762 (2021).
ACKNOWLEDGMENTS
We thank K. A. Evans for illustrations, S. Timmler for the
electron micrograph image, and B. Everitt, T. Robbins, D. Rowitch,
S. Crisp, A. Vanhaesebrouck, H. Pivonkova, S. Hall, K. Evans,
and Y. Kamen for comments on the manuscript.Funding:
Supported by the European Research Council (ERC: the European
Union’s Horizon 2020 research and innovation program grant
agreement 771411; R.T.K., G.B.); the Paul G. Allen Frontiers Group
(Allen Distinguished Investigator program #12076, R.T.K.); the
UK Multiple Sclerosis Society (Centre of Excellence Award #132,
R.T.K.); the Lister Institute of Preventive Medicine (a research
prize, R.T.K.); and the Medical Research Council (grant MR/
N02530X/1, D.B.). The funders had no role in the decision to publish,
nor in the preparation of the manuscript.Competing interests:
The authors have no competing interest to declare.
10.1126/science.aba6905
Bonettoet al.,Science 374 , eaba6905 (2021) 12 November 2021 8of8
RESEARCH | REVIEW