Science - USA (2021-11-12)

(Antfer) #1
Nat. Neurosci. 23 , 819–831 (2020). doi:10.1038/
s41593-020-0637-3; pmid: 32424285


  1. S. O. Spitzeret al., Oligodendrocyte Progenitor Cells Become
    Regionally Diverse and Heterogeneous with Age.Neuron
    101 , 459–471.e5 (2019). doi:10.1016/j.neuron.2018.12.020;
    pmid: 30654924

  2. Y. Kamen, H. Pivonkova, K. A. Evans, R. T. Káradóttir,
    A matter of state: Diversity in oligodendrocyte lineage
    cells.Neuroscientist1073858420987208 (2021).
    doi:10.1177/1073858420987208; pmid: 33567971

  3. T. Xuet al., Rapid formation and selective stabilization of
    synapses for enduring motor memories.Nature 462 ,
    915 – 919 (2009). doi:10.1038/nature08389; pmid: 19946267

  4. T. Czopka, C. Ffrench-Constant, D. A. Lyons, Individual
    oligodendrocytes have only a few hours in which to generate
    new myelin sheaths in vivo.Dev. Cell 25 , 599–609 (2013).
    doi:10.1016/j.devcel.2013.05.013; pmid: 23806617

  5. R. J. McDonald, N. M. White, A triple dissociation of memory
    systems: Hippocampus, amygdala, and dorsal striatum.
    Behav. Neurosci. 107 ,3–22 (1993). doi:10.1037/0735-
    7044.107.1.3; pmid: 8447956

  6. A. J. Gruber, R. J. McDonald, Context, emotion, and the
    strategic pursuit of goals: Interactions among multiple brain
    systems controlling motivated behavior.Front. Behav.
    Neurosci. 6 , 50 (2012). doi:10.3389/fnbeh.2012.00050;
    pmid: 22876225

  7. H. O. Gautieret al., Neuronal activity regulates remyelination
    via glutamate signalling to oligodendrocyte progenitors.
    Nat. Commun. 6 , 8518 (2015). doi:10.1038/ncomms9518;
    pmid: 26439639

  8. B. D. Trapp, A. Nishiyama, D. Cheng, W. Macklin,
    Differentiation and death of premyelinating oligodendrocytes
    in developing rodent brain.J. Cell Biol. 137 , 459–468 (1997).
    doi:10.1083/jcb.137.2.459; pmid: 9128255

  9. A. C. Geraghtyet al., Loss of Adaptive Myelination
    Contributes to Methotrexate Chemotherapy-Related
    Cognitive Impairment.Neuron 103 , 250–265.e8 (2019).
    doi:10.1016/j.neuron.2019.04.032; pmid: 31122677

  10. K. D. Micheva, M. Kiraly, M. M. Perez, D. V. Madison,
    Conduction Velocity Along the Local Axons of Parvalbumin
    Interneurons Correlates With the Degree of Axonal
    Myelination.Cereb. Cortex 31 , 3374–3392 (2021).
    doi:10.1093/cercor/bhab018; pmid: 33704414

  11. M. Deschênes, P. Landry, Axonal branch diameter and
    spacing of nodes in the terminal arborization of identified
    thalamic and cortical neurons.Brain Res. 191 , 538– 544
    (1980). doi:10.1016/0006-8993(80)91302-5; pmid: 7378769

  12. S. Koudelkaet al., Individual Neuronal Subtypes Exhibit
    Diversity in CNS Myelination Mediated by Synaptic Vesicle
    Release.Curr. Biol. 26 , 1447–1455 (2016). doi:10.1016/
    j.cub.2016.03.070; pmid: 27161502

  13. M. Zonouziet al., Individual Oligodendrocytes Show Bias for
    Inhibitory Axons in the Neocortex.Cell Rep. 27 , 2799–2808.e3
    (2019). doi:10.1016/j.celrep.2019.05.018; pmid: 31167127

  14. B. Emeryet al., Myelin gene regulatory factor is a critical
    transcriptional regulator required for CNS myelination.
    Cell 138 , 172–185 (2009). doi:10.1016/j.cell.2009.04.031;
    pmid: 19596243

  15. L. R. Squire, L. Genzel, J. T. Wixted, R. G. Morris, Memory
    consolidation.Cold Spring Harb. Perspect. Biol. 7 , a021766
    (2015). doi:10.1101/cshperspect.a021766; pmid: 26238360
    74. E. A. Gouldet al., Mild myelin disruption elicits early
    alteration in behavior and proliferation in the subventricular
    zone.eLife 7 , e34783 (2018). doi:10.7554/eLife.34783;
    pmid: 29436368
    75. M. A. Jeffrieset al., ERK1/2 Activation in Preexisting
    Oligodendrocytes of Adult Mice Drives New Myelin Synthesis
    and Enhanced CNS Function.J. Neurosci. 36 , 9186– 9200
    (2016). doi:10.1523/JNEUROSCI.1444-16.2016;
    pmid: 27581459
    76. R. Kawaiet al., Motor cortex is required for learning but not
    for executing a motor skill.Neuron 86 , 800–812 (2015).
    doi:10.1016/j.neuron.2015.03.024; pmid: 25892304
    77. P. M. Schalomon, D. Wahlsten, Wheel running behavior is
    impaired by both surgical section and genetic absence of the
    mouse corpus callosum.Brain Res. Bull. 57 , 27–33 (2002).
    doi:10.1016/S0361-9230(01)00633-5; pmid: 11827734
    78. A. E. Papale, B. M. Hooks, Circuit changes in motor cortex
    during motor skill learning.Neuroscience 368 , 283– 297
    (2018). doi:10.1016/j.neuroscience.2017.09.010;
    pmid: 28918262
    79. D. Spampinato, P. Celnik, Temporal dynamics of cerebellar
    and motor cortex physiological processes during motor skill
    learning.Sci. Rep. 7 , 40715 (2017). doi:10.1038/srep40715;
    pmid: 28091578
    80. J. M. Galea, A. Vazquez, N. Pasricha, J. J. de Xivry, P. Celnik,
    Dissociating the roles of the cerebellum and motor cortex
    during adaptive learning: The motor cortex retains what the
    cerebellum learns.Cereb. Cortex 21 , 1761–1770 (2011).
    doi:10.1093/cercor/bhq246; pmid: 21139077
    81. R. G. Morris, P. Garrud, J. N. Rawlins, J. O’Keefe, Place
    navigation impaired in rats with hippocampal lesions.Nature
    297 , 681–683 (1982). doi:10.1038/297681a0; pmid: 7088155
    82. C. V. Vorhees, M. T. Williams, Assessing spatial learning
    and memory in rodents.ILAR J. 55 , 310–332 (2014).
    doi:10.1093/ilar/ilu013; pmid: 25225309
    83. P. Tovote, J. P. Fadok, A. Lüthi, Neuronal circuits for fear
    and anxiety.Nat. Rev. Neurosci. 16 , 317–331 (2015).
    doi:10.1038/nrn3945; pmid: 25991441
    84. T. Kitamuraet al., Engrams and circuits crucial for systems
    consolidation of a memory.Science 356 , 73–78 (2017).
    doi:10.1126/science.aam6808; pmid: 28386011
    85. T. Abel, K. M. Lattal, Molecular mechanisms of memory
    acquisition, consolidation and retrieval.Curr. Opin. Neurobiol.
    11 , 180–187 (2001). doi:10.1016/S0959-4388(00)00194-X;
    pmid: 11301237
    86. G. Buzsáki, The hippocampo-neocortical dialogue.
    Cereb. Cortex 6 , 81–92 (1996). doi:10.1093/cercor/6.2.81;
    pmid: 8670641
    87. G. Girardeau, M. Zugaro, Hippocampal ripples and memory
    consolidation.Curr. Opin. Neurobiol. 21 , 452–459 (2011).
    doi:10.1016/j.conb.2011.02.005; pmid: 21371881
    88. R. J. Smeyneet al., fos-lacZ transgenic mice: Mapping sites
    of gene induction in the central nervous system.Neuron
    8 , 13–23 (1992). doi:10.1016/0896-6273(92)90105-M;
    pmid: 1730004
    89. S. Campeauet al., Induction of the c-fos proto-oncogene in
    rat amygdala during unconditioned and conditioned fear.
    Brain Res. 565 , 349–352 (1991). doi:10.1016/0006-8993(91)
    91669-R; pmid: 1842702
    90. T. Barron, J. Saifetiarova, M. A. Bhat, J. H. Kim, Myelination of
    Purkinje axons is critical for resilient synaptic transmission in


the deep cerebellar nucleus.Sci. Rep. 8 , 1022 (2018).
doi:10.1038/s41598-018-19314-0; pmid: 29348594


  1. J. H. Kim, R. Renden, H. von Gersdorff, Dysmyelination of
    auditory afferent axons increases the jitter of action potential
    timing during high-frequency firing.J. Neurosci. 33 ,
    9402 – 9407 (2013). doi:10.1523/JNEUROSCI.3389-12.2013;
    pmid: 23719808

  2. S. E. Kim, K. Turkington, C. Kushmerick, J. H. Kim, Central
    dysmyelination reduces the temporal fidelity of synaptic
    transmission and the reliability of postsynaptic firing
    during high-frequency stimulation.J. Neurophysiol. 110 ,
    1621 – 1630 (2013). doi:10.1152/jn.00117.2013;
    pmid: 23843435

  3. M. Makinodan, K. M. Rosen, S. Ito, G. Corfas, A critical period
    for social experience-dependent oligodendrocyte maturation
    and myelination.Science 337 , 1357–1360 (2012).
    doi:10.1126/science.1220845; pmid: 22984073

  4. J. Liuet al., Clemastine Enhances Myelination in the
    Prefrontal Cortex and Rescues Behavioral Changes in Socially
    Isolated Mice.J. Neurosci. 36 , 957–962 (2016). doi:10.1523/
    JNEUROSCI.3608-15.2016; pmid: 26791223

  5. M. Swire, Y. Kotelevtsev, D. J. Webb, D. A. Lyons,
    C. Ffrench-Constant, Endothelin signalling mediates
    experience-dependent myelination in the CNS.eLife 8 ,
    e49493 (2019). doi:10.7554/eLife.49493; pmid: 31657718

  6. A. Teissieret al., Early-life stress impairs postnatal
    oligodendrogenesis and adult emotional behaviour through
    activity-dependent mechanisms.Mol. Psychiatry 25 ,
    1159 – 1174 (2020). doi:10.1038/s41380-019-0493-2;
    pmid: 31439936

  7. D. Koshiyamaet al., White matter microstructural alterations
    across four major psychiatric disorders: Mega-analysis study
    in 2937 individuals.Mol. Psychiatry 25 , 883–895 (2020).
    doi:10.1038/s41380-019-0553-7; pmid: 31780770

  8. B. Zhaoet al., Common genetic variation influencing human
    white matter microstructure.Science 372 , eabf3736 (2021).
    doi:10.1126/science.abf3736; pmid: 34140357

  9. B. Emery, Regulation of oligodendrocyte differentiation and
    myelination.Science 330 , 779–782 (2010). doi:10.1126/
    science.1190927; pmid: 21051629

  10. R. Schurr, A. A. Mezer, The glial framework reveals white-
    matter fiber architecture in human and primate brains.
    Science 374 , 762 (2021).


ACKNOWLEDGMENTS
We thank K. A. Evans for illustrations, S. Timmler for the
electron micrograph image, and B. Everitt, T. Robbins, D. Rowitch,
S. Crisp, A. Vanhaesebrouck, H. Pivonkova, S. Hall, K. Evans,
and Y. Kamen for comments on the manuscript.Funding:
Supported by the European Research Council (ERC: the European
Union’s Horizon 2020 research and innovation program grant
agreement 771411; R.T.K., G.B.); the Paul G. Allen Frontiers Group
(Allen Distinguished Investigator program #12076, R.T.K.); the
UK Multiple Sclerosis Society (Centre of Excellence Award #132,
R.T.K.); the Lister Institute of Preventive Medicine (a research
prize, R.T.K.); and the Medical Research Council (grant MR/
N02530X/1, D.B.). The funders had no role in the decision to publish,
nor in the preparation of the manuscript.Competing interests:
The authors have no competing interest to declare.

10.1126/science.aba6905

Bonettoet al.,Science 374 , eaba6905 (2021) 12 November 2021 8of8


RESEARCH | REVIEW

Free download pdf