Begin2.DVI

(Ben Green) #1
Integrals containing terms of the forma+bxn





∫ dx
a+bx^2 =






√^1
ab

tan−^1

(√
b
ax

)
+C, ab > 0

1
2


−ab

ln

∣∣
∣∣a+


−abx
a−


−abx

∣∣
∣∣+C, ab < 0





∫ x dx
a+bx^2 =

1
2 bln|x

(^2) +a
b|+C
124.
∫ x (^2) dx
a+bx^2 =
x
b−
a
b
∫ dx
a+bx^2
125.
∫ dx
(a+bx^2 )^2 =
x
2 a(a+bx^2 )+
1
2 a
∫ dx
a+bx^2
126.
∫ dx
x(a+bx^2 )=
1
2 aln
∣∣
∣∣ x
2
a+bx^2
∣∣
∣∣+C
127.
∫ dx
x^2 (a+bx^2 )=−
1
ax−
b
a
∫ dx
a+bx^2
128.
∫ dx
(a+bx^2 )n+1=
1
2 na
x
(a+bx^2 )n+
2 n− 1
2 na
∫ dx
(a+bx^2 )n
129.
∫ dx
α^3 +β^3 x^3 =
1
6 α^2 β
[
2

3 tan−^1
( 2 βx−α

3 α
)



  • ln
    ∣∣
    ∣∣ (α+βx)
    2
    α^2 −αβx+β^2 x^2
    ∣∣
    ∣∣
    ]
    +C



  1. ∫ x dx
    α^3 +β^3 x^3 =
    1
    6 αβ^2
    [
    2

    3 tan−^1
    ( 2 βx−α

    3 α
    )
    −ln
    ∣∣
    ∣∣ (α+βx)^2
    α^2 −αβx+β^2 x^2
    ∣∣
    ∣∣
    ]
    +C
    IfX=a+bxn, then



  2. xm−^1 Xpdx= x
    mXp
    m+pn+
    apn
    m+pn

    xm−^1 Xp−^1 dx





  3. xm−^1 Xpdx=−x
    mXp+1
    an(p+ 1)+
    m+pn+n
    an(p+ 1)

    xm−^1 Xp+1dx





  4. xm−^1 XPdx=x
    m−nXp+1
    b(m+pn) −
    (m−n)a
    b(m+pn)

    xm−n−^1 Xpdx





  5. xm−^1 Xpdx=x
    mXp+1
    am −
    (m+pn+n)b
    am

    xm+n−^1 Xpdx





  6. xm−^1 Xpdx=x
    m−nXp+1
    bn(p+ 1) −
    m−n
    bn(p+ 1)

    xm−n−^1 Xp+1dx





  7. xm−^1 Xpdx=x
    mXp
    m −
    bpn
    m

    xm+n−^1 Xp−^1 dx
    Appendix C



Free download pdf