∫ dx
(1−cosax)^2 =−
1
2 acot
ax
2 −
1
6 acot
3 ax
2 +C
∫ dx
(1 + cosax)^2 =
1
2 atan
ax
2 +
1
6 atan
2 ax
2 +C
∫ dx
α+βcosax=
2
a
√
α^2 −β^2
tan−^1
(√
α−β
α+βtan
ax
2
)
+C, α^2 > β^2
1
a
√
β^2 −α^2
ln
∣∣
∣∣
√
β+α+
√
√ β−αtanax^2
β+α−√β−αtanax 2
∣∣
∣∣+C, α^2 < β^2
∫ dx
α+cosβax
=xα−βα
∫ dx
β+αcosax
∫ dx
(α+βcosax)^2 =
αsinax
a(β^2 −α^2 )(α+βcosax)−
α
β^2 −α^2
∫ dx
α+βcosax, α^6 =β
∫ dx
α^2 +β^2 cos^2 ax=
1
aα
√
α^2 +β^2
tan−^1
(
√αtanax
α^2 +β^2
)
+C
∫ dx
α^2 −β^2 cos^2 ax=
1
aα
√
α^2 −β^2
tan−^1
(
√αtanax
α^2 −β^2
)
+C, α^2 > β^2
1
2 aα
√
β^2 −α^2
ln
∣∣
∣∣
∣
αtanax−
√
β^2 −α^2
αtanax+
√
β^2 −α^2
∣∣
∣∣
∣+C, α
(^2) < β 2
456.
∫ dx
cosnax=
sec(n−2)axtanax
(n−1)a +
n− 2
n− 1
∫
secn−^2 ax dx+C
Integrals containing both sine and cosine functions
457.
∫
sinaxcosax dx= 21 asin^2 ax+C
458.
∫ dx
sinaxcosax=−
1
aln|cotax|+C
459.
∫
sinaxcosbx dx=−cos(2(aa−−bb))x−cos(2(aa++bb))x+C, a 6 =b
460.
∫
sinaxsinbx dx=sin(2(aa−−bb))x−sin(2(aa++bb))x+C
461.
∫
cosaxcosbx dx=sin(2(aa−−bb))x+sin(2(aa++bb))x+C
462.
∫
sinnaxcosax dx=sin
n+1ax
(n+ 1)a +C
463.
∫
cosnaxsinax dx=−cos
n+1ax
(n+ 1)a +C
Appendix C