Begin2.DVI

(Ben Green) #1




∫ dx
(1−cosax)^2 =−

1
2 acot

ax
2 −

1
6 acot

3 ax
2 +C





∫ dx
(1 + cosax)^2 =

1
2 atan

ax
2 +

1
6 atan

2 ax
2 +C





∫ dx
α+βcosax=







2
a


α^2 −β^2

tan−^1

(√
α−β
α+βtan

ax
2

)
+C, α^2 > β^2

1
a


β^2 −α^2

ln

∣∣
∣∣


β+α+


√ β−αtanax^2
β+α−√β−αtanax 2

∣∣
∣∣+C, α^2 < β^2





∫ dx

α+cosβax

=xα−βα

∫ dx
β+αcosax





∫ dx
(α+βcosax)^2 =

αsinax
a(β^2 −α^2 )(α+βcosax)−

α
β^2 −α^2

∫ dx
α+βcosax, α^6 =β





∫ dx
α^2 +β^2 cos^2 ax=

1


α^2 +β^2

tan−^1

(
√αtanax
α^2 +β^2

)
+C





∫ dx
α^2 −β^2 cos^2 ax=







1


α^2 −β^2

tan−^1

(
√αtanax
α^2 −β^2

)
+C, α^2 > β^2

1
2 aα


β^2 −α^2

ln

∣∣
∣∣

αtanax−


β^2 −α^2
αtanax+


β^2 −α^2

∣∣
∣∣
∣+C, α

(^2) < β 2
456.
∫ dx
cosnax=
sec(n−2)axtanax
(n−1)a +
n− 2
n− 1

secn−^2 ax dx+C
Integrals containing both sine and cosine functions
457.

sinaxcosax dx= 21 asin^2 ax+C
458.
∫ dx
sinaxcosax=−
1
aln|cotax|+C
459.

sinaxcosbx dx=−cos(2(aa−−bb))x−cos(2(aa++bb))x+C, a 6 =b
460.

sinaxsinbx dx=sin(2(aa−−bb))x−sin(2(aa++bb))x+C
461.

cosaxcosbx dx=sin(2(aa−−bb))x+sin(2(aa++bb))x+C
462.

sinnaxcosax dx=sin
n+1ax
(n+ 1)a +C
463.

cosnaxsinax dx=−cos
n+1ax
(n+ 1)a +C
Appendix C

Free download pdf