∫∞0e−axsinxbxdx= tan−^1 ab∫∞0e−ax−e−bx
x dx= lnb
a∫∞0e−a^2 x^2 cosbx dx=√π
2 ae−b^2 / 4 a^2∫∞0e−(ax^2 +b/x^2 )dx=^12√
π
ae− 2 √ab∫∞0x^2 ne−βx2
dx=(2n−1)(2 2 nn+1−β3)n···^5 ·^3 ·^1√π
β∫∞0e−k(x 2
a^2 +b2
x^2)
dx=√π
2
√a
ke−^2 kb/a
115.
∫∞
0sinrx dx
x(x^4 + 2a^2 x^2 cos 2β+a^4 )=π
2 a^4[
1 −sin(arsin 2sinββ+ 2β)e−βrcosβ]∫∞
0cosrx dx
x^4 + 2a^2 x^2 cos 2β+a^4 =π
2 a^3sin(β+arsinβ)
sin 2β e−arcosβ∫∞
0sinrx dx
x(x^6 +a^6 )=π
6 a^6[
3 −e−ar− 2 e−ar/^2 cosar√
3
2]∫∞0cosrx dx
x^6 +a^6 =π
6 a^5[
e−ar− 2 e−ar/^2 cos(ar√
3
2 +2 π
3 )]∫∞0sinπx dx
x(1−x^2 )=π∫∞0e−qx−e−px
x cosbx dx=1
2 ln∣∣
∣∣p(^2) +b 2
q^2 +b^2
∣∣
∣∣
121.
∫∞
0
e−qx−e−px
x sinbx dx= tan
− 1 p
b−tan
− 1 q
b
122.
∫∞
0
e−axsinpx−xsinqxdx= tan−^1 pa−tan−^1 qb
123.
∫∞
0
e−axcospx−xcosqxdx=^12 ln
∣∣
∣∣a
(^2) +a 2
a^2 +p^2
∣∣
∣∣
124.
∫∞
0
xe−x^2 sinax dx=a
√π
4 e
−a^2 / 4
125.
∫∞
0
x^2 e−x^2 cosax dx=
√π
4
(
1 −a
2
2
)
e−a^2 /^4
126.
∫∞
0
x^3 e−x^2 sinax dx=
√π
8
(
3 a−a
3
2
)
e−a^2 /^4
Appendix C