Begin2.DVI

(Ben Green) #1




∫∞

0

e−axsinxbxdx= tan−^1 ab





∫∞

0

e−ax−e−bx
x dx= ln

b
a





∫∞

0

e−a^2 x^2 cosbx dx=

√π
2 ae

−b^2 / 4 a^2





∫∞

0

e−(ax^2 +b/x^2 )dx=^12


π
ae

− 2 √ab





∫∞

0

x^2 ne−βx

2
dx=(2n−1)(2 2 nn+1−β3)n···^5 ·^3 ·^1

√π
β





∫∞

0

e−k

(x 2
a^2 +b

2
x^2

)
dx=

√π
2
√a
k

e−^2 kb/a
115.


∫∞
0

sinrx dx
x(x^4 + 2a^2 x^2 cos 2β+a^4 )=

π
2 a^4

[
1 −sin(arsin 2sinββ+ 2β)e−βrcosβ

]





∫∞
0

cosrx dx
x^4 + 2a^2 x^2 cos 2β+a^4 =

π
2 a^3

sin(β+arsinβ)
sin 2β e

−arcosβ





∫∞
0

sinrx dx
x(x^6 +a^6 )=

π
6 a^6

[
3 −e−ar− 2 e−ar/^2 cosar


3
2

]





∫∞

0

cosrx dx
x^6 +a^6 =

π
6 a^5

[
e−ar− 2 e−ar/^2 cos(ar


3
2 +

2 π
3 )

]





∫∞

0

sinπx dx
x(1−x^2 )=π





∫∞

0

e−qx−e−px
x cosbx dx=

1
2 ln

∣∣
∣∣p

(^2) +b 2
q^2 +b^2
∣∣
∣∣
121.
∫∞
0
e−qx−e−px
x sinbx dx= tan
− 1 p
b−tan
− 1 q
b
122.
∫∞
0
e−axsinpx−xsinqxdx= tan−^1 pa−tan−^1 qb
123.
∫∞
0
e−axcospx−xcosqxdx=^12 ln
∣∣
∣∣a
(^2) +a 2
a^2 +p^2
∣∣
∣∣
124.
∫∞
0
xe−x^2 sinax dx=a
√π
4 e
−a^2 / 4
125.
∫∞
0
x^2 e−x^2 cosax dx=
√π
4
(
1 −a
2
2
)
e−a^2 /^4
126.
∫∞
0
x^3 e−x^2 sinax dx=
√π
8
(
3 a−a
3
2
)
e−a^2 /^4
Appendix C

Free download pdf