∫∞
0
e−axsinxbxdx= tan−^1 ab
∫∞
0
e−ax−e−bx
x dx= ln
b
a
∫∞
0
e−a^2 x^2 cosbx dx=
√π
2 ae
−b^2 / 4 a^2
∫∞
0
e−(ax^2 +b/x^2 )dx=^12
√
π
ae
− 2 √ab
∫∞
0
x^2 ne−βx
2
dx=(2n−1)(2 2 nn+1−β3)n···^5 ·^3 ·^1
√π
β
∫∞
0
e−k
(x 2
a^2 +b
2
x^2
)
dx=
√π
2
√a
k
e−^2 kb/a
115.
∫∞
0
sinrx dx
x(x^4 + 2a^2 x^2 cos 2β+a^4 )=
π
2 a^4
[
1 −sin(arsin 2sinββ+ 2β)e−βrcosβ
]
∫∞
0
cosrx dx
x^4 + 2a^2 x^2 cos 2β+a^4 =
π
2 a^3
sin(β+arsinβ)
sin 2β e
−arcosβ
∫∞
0
sinrx dx
x(x^6 +a^6 )=
π
6 a^6
[
3 −e−ar− 2 e−ar/^2 cosar
√
3
2
]
∫∞
0
cosrx dx
x^6 +a^6 =
π
6 a^5
[
e−ar− 2 e−ar/^2 cos(ar
√
3
2 +
2 π
3 )
]
∫∞
0
sinπx dx
x(1−x^2 )=π
∫∞
0
e−qx−e−px
x cosbx dx=
1
2 ln
∣∣
∣∣p
(^2) +b 2
q^2 +b^2
∣∣
∣∣
121.
∫∞
0
e−qx−e−px
x sinbx dx= tan
− 1 p
b−tan
− 1 q
b
122.
∫∞
0
e−axsinpx−xsinqxdx= tan−^1 pa−tan−^1 qb
123.
∫∞
0
e−axcospx−xcosqxdx=^12 ln
∣∣
∣∣a
(^2) +a 2
a^2 +p^2
∣∣
∣∣
124.
∫∞
0
xe−x^2 sinax dx=a
√π
4 e
−a^2 / 4
125.
∫∞
0
x^2 e−x^2 cosax dx=
√π
4
(
1 −a
2
2
)
e−a^2 /^4
126.
∫∞
0
x^3 e−x^2 sinax dx=
√π
8
(
3 a−a
3
2
)
e−a^2 /^4
Appendix C