I6-4.
By construction
A~+^1
2
B~=C,~ B~+^1
2
A~=D,~ A~+E~=B~
All these vectors are coplaner so that there exists scalar
constantsα,β,γ,δsuch that
A~+αE~=βC~ and A~+γE~=δD~
or
A~+α(B~−A~) =β(A~+^1
2
B~) and A~+γ(B~−A~) =δ(B~+^1
2
A~)
This implies that
A~(1−α−β) +B~(α−^1
2
β) =~ 0 and A~(1−γ−^1
2
δ) +B~(γ−δ) =~ 0
This produces the simultaneous equations
α+β= 1, α−
1
2 β= 0, γ+
1
2 δ= 1, γ−δ= 0
Solving forα,β,γ,δone finds
α= 1/ 3 , β= 2/ 3 , γ= 2/ 3 , δ= 2/ 3
I6-5. (a)c 1 A~+c 2 B~+c 3 C~=~ 0 gives the system of equations
c 1 − 4 c 2 + 7c 3 =0
c 1 − 3 c 2 + 6c 3 =0
− 2 c 1 − 6 c 3 =0
=⇒ c 1 =− 3 c 2 , c 3 =c 2
Sincec 26 = 0, selectc 2 = 1for convenience, thenc 1 =− 3 , c 2 = 1, c 3 = 1, so vectors are
linearly dependent.
(b) Linearly independent
(c) Linearly independent
I6-6. The vectorsA,~ B,~ C~are linearly dependent if and only ifA~·(B~×C~) = 0
IfA~·(B~×C~) = 0andA~ 6 = 0, thenB~×C~=~ 0 which implies the vectorsB~ andC~ are
colinear. If the determinant
∣∣
∣∣
∣∣
A 1 A 2 A 3
B 1 B 2 B 3
C 1 C 2 C 3
∣∣
∣∣
∣∣= 0, then two rows of the determinant
are proportional which implies two of the vectors are colinear.
Solutions Chapter 6