I6-7. (a) A~·A~=|A~||A~|cos 0 =|A~|^2 =C^2
(b) d
dt
(A~·A~) = d
dt
C^2 =⇒ A~·d
A~
dt
+d
A~
dt
·A~= 0 =⇒ A~·d
A~
dt
= 0which showsA~is
perpendicular to d
A~
dt
I6-8.
Equation of line is~r=~r 1 +tA~wheretis a
parameter. Use the property of right tri-
angles and write
d=|~r 0 −~r 1 |sinθ=|(~r 0 −~r 1 )×eˆA|
where the absolute value sign insures that
dis positive and ˆeAis a unit vector in the
direction ofA~.
I6-9. Area is 54 square units
I6-10.
A~+B~+C~+D~=~ 0
By construction
E~=^1
2
A~+^1
2
B~
F~=^1
2
C~+^1
2
D~
G~=^1
2
B~+^1
2
C~
H~ =^1
2
D~+^1
2
A~
To showE~ is parallel toF~, showE~×F~ =~ 0 and to showG~ is parallel toH~, show
G~×H~ =~ 0
E~×F~=(^1
2
A~+^1
2
B~)×(^1
2
C~+^1
2
D~) =^1
2
(A~+B~)×(−^1
2
)(A~+B~) =~ 0
G~×H~ =(^1
2
B~+^1
2
C~)×(^1
2
D~+^1
2
A~) =^1
2 (
B~+C~)×(−^1
2 )(
B~+C~) =~ 0
I6-11.
~r−~r 0 =(x−x 0 )ˆe 1 + (y−y 0 )ˆe 2 + (z−z 0 )ˆe 3
(~r−~r 0 )·(~r−~r 0 ) =ρ^2
(x−x 0 )^2 + (y−y 0 )^2 + (z−z 0 )^2 =ρ^2
Solutions Chapter 6