Begin2.DVI

(Ben Green) #1

I6-7. (a) A~·A~=|A~||A~|cos 0 =|A~|^2 =C^2


(b) d
dt

(A~·A~) = d
dt

C^2 =⇒ A~·d
A~
dt

+d
A~
dt

·A~= 0 =⇒ A~·d
A~
dt

= 0which showsA~is

perpendicular to d
A~
dt

I6-8.
Equation of line is~r=~r 1 +tA~wheretis a
parameter. Use the property of right tri-
angles and write


d=|~r 0 −~r 1 |sinθ=|(~r 0 −~r 1 )×eˆA|

where the absolute value sign insures that
dis positive and ˆeAis a unit vector in the
direction ofA~.

I6-9. Area is 54 square units


I6-10.
A~+B~+C~+D~=~ 0
By construction
E~=^1
2
A~+^1
2
B~


F~=^1
2

C~+^1
2

D~

G~=^1
2
B~+^1
2
C~

H~ =^1
2
D~+^1
2
A~

To showE~ is parallel toF~, showE~×F~ =~ 0 and to showG~ is parallel toH~, show
G~×H~ =~ 0

E~×F~=(^1
2

A~+^1
2

B~)×(^1
2

C~+^1
2

D~) =^1
2

(A~+B~)×(−^1
2

)(A~+B~) =~ 0

G~×H~ =(^1
2
B~+^1
2
C~)×(^1
2
D~+^1
2
A~) =^1
2 (
B~+C~)×(−^1
2 )(
B~+C~) =~ 0

I6-11.
~r−~r 0 =(x−x 0 )ˆe 1 + (y−y 0 )ˆe 2 + (z−z 0 )ˆe 3
(~r−~r 0 )·(~r−~r 0 ) =ρ^2
(x−x 0 )^2 + (y−y 0 )^2 + (z−z 0 )^2 =ρ^2


Solutions Chapter 6
Free download pdf