I6-4.
By construction
A~+^1
2
B~=C,~ B~+^1
2
A~=D,~ A~+E~=B~All these vectors are coplaner so that there exists scalar
constantsα,β,γ,δsuch thatA~+αE~=βC~ and A~+γE~=δD~or
A~+α(B~−A~) =β(A~+^1
2B~) and A~+γ(B~−A~) =δ(B~+^1
2A~)This implies thatA~(1−α−β) +B~(α−^1
2β) =~ 0 and A~(1−γ−^1
2δ) +B~(γ−δ) =~ 0This produces the simultaneous equationsα+β= 1, α−1
2 β= 0, γ+1
2 δ= 1, γ−δ= 0Solving forα,β,γ,δone findsα= 1/ 3 , β= 2/ 3 , γ= 2/ 3 , δ= 2/ 3I6-5. (a)c 1 A~+c 2 B~+c 3 C~=~ 0 gives the system of equations
c 1 − 4 c 2 + 7c 3 =0
c 1 − 3 c 2 + 6c 3 =0
− 2 c 1 − 6 c 3 =0=⇒ c 1 =− 3 c 2 , c 3 =c 2Sincec 26 = 0, selectc 2 = 1for convenience, thenc 1 =− 3 , c 2 = 1, c 3 = 1, so vectors are
linearly dependent.
(b) Linearly independent
(c) Linearly independentI6-6. The vectorsA,~ B,~ C~are linearly dependent if and only ifA~·(B~×C~) = 0
IfA~·(B~×C~) = 0andA~ 6 = 0, thenB~×C~=~ 0 which implies the vectorsB~ andC~ arecolinear. If the determinant∣∣
∣∣
∣∣A 1 A 2 A 3
B 1 B 2 B 3
C 1 C 2 C 3∣∣
∣∣
∣∣= 0, then two rows of the determinantare proportional which implies two of the vectors are colinear.Solutions Chapter 6