I8-32. If origin outside ofS, then use the divergence theorem and show
∫∫Sˆen·~r
r^3 dS=∫∫∫V∇·(
~r
r^3)
dVand then show∇·(
~r
r^3)
= 0
If origin is inside ofS, then place a sphere of radiusabout the origin and show
∫∫Sˆen·~r
r^3 dS+∫∫Sˆen· ~r
r^3 dS=∫∫∫V∇·~r
r^3 dV= 0On sphere of radiusshow that∫∫Sˆen·~r
r^3dS=− 4 πI8-33. 5 x^2 yz^3 + 3xy^2 z^2
I8-35. Area=^12 (base) (height)
I8-36. − 162 π
I8-37. I= 216
I8-38. 4
Problems 8-40 to 8-49See equations (8.74) to (8.82)I8-50. (c) If~r=~r(u,v,w), thend~r=∂u∂~rdu+∂~r∂vdv+∂w∂~rdwis the diagonal of a volume
element in the shape of a parallelepiped having sides A~ = ∂~r∂udu, B~ = ∂~r∂vdv and
C~=∂w∂~rdw. The volume of this elemental parallelepiped isdV =|A~·(B~×C~)|=|∂~r
∂u·(∂~r
∂v×∂~r
∂w)|dudvdwUse vector identity and orthogonality property∂~r∂v·∂w∂~r = 0to show|∂~r
∂u·(∂~r
∂v×∂~r
∂w)|=huhvhwI8-51. Calculategradv×gradwand then make use of the fact that mixed partial
derivatives are equal to showdiv (gradv×gradw) = 0Solutions Chapter 8