I8-32. If origin outside ofS, then use the divergence theorem and show
∫∫
S
ˆen·~r
r^3 dS=
∫∫∫
V
∇·
(
~r
r^3
)
dV
and then show∇·
(
~r
r^3
)
= 0
If origin is inside ofS, then place a sphere of radiusabout the origin and show
∫∫
S
ˆen·~r
r^3 dS+
∫∫
S
ˆen· ~r
r^3 dS=
∫∫∫
V
∇·
~r
r^3 dV= 0
On sphere of radiusshow that
∫∫
S
ˆen·
~r
r^3
dS=− 4 π
I8-33. 5 x^2 yz^3 + 3xy^2 z^2
I8-35. Area=^12 (base) (height)
I8-36. − 162 π
I8-37. I= 216
I8-38. 4
Problems 8-40 to 8-49See equations (8.74) to (8.82)
I8-50. (c) If~r=~r(u,v,w), thend~r=∂u∂~rdu+∂~r∂vdv+∂w∂~rdwis the diagonal of a volume
element in the shape of a parallelepiped having sides A~ = ∂~r∂udu, B~ = ∂~r∂vdv and
C~=∂w∂~rdw. The volume of this elemental parallelepiped is
dV =|A~·(B~×C~)|=|
∂~r
∂u·(
∂~r
∂v×
∂~r
∂w)|dudvdw
Use vector identity and orthogonality property∂~r∂v·∂w∂~r = 0to show
|
∂~r
∂u·(
∂~r
∂v×
∂~r
∂w)|=huhvhw
I8-51. Calculategradv×gradwand then make use of the fact that mixed partial
derivatives are equal to showdiv (gradv×gradw) = 0
Solutions Chapter 8