Begin2.DVI

(Ben Green) #1
Chapter 10

I10-1. (c) AB=


[
36 59
11 18

]
(d) B−^1 A−^1 =

[
−18 59
11 − 36

]

I10-2.
AA−^1 =I
(AA−^1 )T=IT=I
(A−^1 )TAT=I multiply by(AT)−^1
(A−^1 )T=(AT)−^1


I10-4. (a)
If AB=BA, left multipley byA−^1
A−^1 AB=A−^1 BA
B=A−^1 BAright multiply byA−^1
BA−^1 =A−^1 BAA−^1
BA−^1 =A−^1 B


I10-5. If A is symmetric, then AT =A so that if (A−^1 )TAT = I one can write


(A−^1 )TA=I. Multiply this last equation on the right byA−^1 to obtain(A−^1 )T=A−^1
which showsA−^1 is symmetric.

I10-6. Left multiply both sides of equation byA−^1


I10-7. IfAB=AandBA=B, then one can write


AB=Aright multiply by A
(AB)A=A^2 associative property
A(BA) =A^2 propertiesBA=BandAB=A
AB=A^2
A=A^2

BA=B right multiply by B
(BA)B=B^2 associative property
B(AB) =B^2 propertiesAB=AandBA=B
BA=B^2
B=B^2

I10-8. (a) LetY =A^2 =AAwithY−^1 = (A^2 )−^1 , then one can write


I=Y Y−^1 = (A^2 )(A^2 )−^1 left multiply byA−^1
A−^1 =A−^1 AA(A^2 )−^1 left mulitply byA−^1
(A−^1 )^2 =A−^1 A(A^2 )−^1 = (A^2 )−^1

I10-9. (a) LetB=AAT, thenBT= (AAT)T=AAT=B


(d) A=^12 (A+AT) +^12 (A−AT)

Solutions Chapter 10
Free download pdf