FORCES IN STRUCTURES 51
Resolving forces vertically:
0 = 3 +F 6 sin 30°+F 7 +F 8 sin 30°
i.e. 0= 3 + 0. 5 F 6 +F 7 + 0. 5 F 8 ( 4. 25 )
Substituting equations (4.23) and (4.24) into equa-
tion (4.25) gives:
0 = 3 + 0. 5 ×− 7. 5 +F 7
+ 0. 5 ×− 7. 5
or F 7 =− 3 + 0. 5 × 7. 5 + 0. 5 × 7. 5
=− 3 + 7. 5
from which, F 7 = 4 .5kN(tensile) ( 4. 26 )
Consider joint (5); see Figure 4.39.
F 4 = −12.5 kN
F 8 = −7.5 kN
F 9
5 kN
30 ° 30 °
30 °
Figure 4.39
Resolving forces horizontally:
F 8 cos 30°+F 9 cos 30°=F 4 cos 30°
i.e. F 8 +F 9 =F 4 ( 4. 27 )
Substituting equations (4.24) and (4.16) into equa-
tion (4.27) gives:
− 7. 5 +F 9 =− 12. 5
i.e. F 9 =− 12. 5 + 7. 5
i.e. F 9 =−5kN(compressive)
The results compare favourably with those obtained
by the graphical method used in Problem 7; see the
table below.
Member Force (kN)
F 1 −11.5
F 2 9.96
F 3 10.83
F 4 −12.5
F 5 −4.0
F 6 −7.5
F 7 4.5
F 8 −7.5
F 9 −5.0
Now try the following exercise
Exercise 21 Further problems on the
method of joints
Using the method of joints, determine the
unknown forces for the following pin-jointed
trusses:
- Figure 4.23 (page 46)
⎡
⎢
⎢
⎣
R 1 = 3 .0kN, R 2 = 1 .0kN,
1–2, 1.73 kN, 1–3,− 3 .46 kN,
2–3,− 2 .0kN
⎤
⎥
⎥
⎦
- Figure 4.24 (page 46)
⎡
⎢
⎢
⎣
R 1 =− 2 .61 kN, R 2 = 2 .61 kN,
H 2 = 6 .0kN, 1–2,− 1 .5kN,
1–3, 3.0kN, 2–3,− 5 .2kN
⎤
⎥
⎥
⎦
- Figure 4.25 (page 46)
⎡
⎢
⎢
⎣
R 1 = 5 .0kN, R 2 = 1 .0kN,
H 1 = 4 .0 kN, 1–2, 1.0 kN,
1–3,− 7 .07 kN, 2–3,− 1 .41 kN
⎤
⎥
⎥
⎦
- Figure 4.26 (page 46)
⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
R 1 = 5 .0kN, R 2 = 7 .0kN,
1–3,− 10 .0kN, 1–6,− 8 .7kN,
3–4,− 8 .0kN, 3–6,− 2 .0kN,
4–6, 4.0 kN 4–5, 8.0 kN,
5–6,−6kN, 5–2,−14 kN,
6–2, 12.1 kN
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦