Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1



  1. D௘ͽ $UHD ELJVTXDUHíVPDOOVTXDUH ͼ௘x௘ͽ^2 íx^2.
    E௘ͽ )RXUUHFWDQJOHVDVVKRZQLQFigure S.21.2.
    F௘ͽ )RXURYHUODSSLQJUHFWDQJOHVDQGVXEWUDFWLQJWKH
    area of four 3 × 3 squares to compensate,
    as shown in Figure S.21.3.
    G௘ͽ 7ZRUHFWDQJOHVRIRQHVL]HSOXVWZRUHFWDQJOHV
    of a smaller size, as shown in Figure S.21.4.
    H௘ͽ &RPSOHWHDOJHEUDRQHDFKRIWKHPWRVHHWKDW
    they all equal 12x + 36.

  2. D௘ͽ x^2  î VRWKHVLGHOHQJWKLVx = 6.
    E௘ͽ x^2 = 96, so x 96.
    F௘ͽ xab.

  3. The triangle on the left is a right isosceles triangle.
    ௘6HHFigure S.21.5௘ͽ
    By the Pythagorean theorem, we have h^2 + h^2 = 8^2 ,
    giving h 82.
    By Example 1 in the lesson, the area of the parallelogram
    is 10 h 802.

  4. Area =^12 ˜˜ u 20 hh 10 10 10 tan 72° 100 tan 72° |307.8.
    ͼ௘6HHFigure S.21.6௘ͽ


33
3

3

3

3

xx

x

xx

x
x
33 x
Figure S.21.2
33
3

3

3

3

xx

x

xx

x
x
33 x
Figure S.21.3
33
3

3

3

3

xx

x

xx

x
x
33 x
Figure S.21.4

45°


8


10


h
Figure S.21.5

72°


10 10


h

Figure S.21.6
Free download pdf