- Dͽ $UHD ELJVTXDUHíVPDOOVTXDUH ͼxͽ^2 íx^2.
Eͽ )RXUUHFWDQJOHVDVVKRZQLQFigure S.21.2.
Fͽ )RXURYHUODSSLQJUHFWDQJOHVDQGVXEWUDFWLQJWKH
area of four 3 × 3 squares to compensate,
as shown in Figure S.21.3.
Gͽ 7ZRUHFWDQJOHVRIRQHVL]HSOXVWZRUHFWDQJOHV
of a smaller size, as shown in Figure S.21.4.
Hͽ &RPSOHWHDOJHEUDRQHDFKRIWKHPWRVHHWKDW
they all equal 12x + 36.
- Dͽ x^2 î VRWKHVLGHOHQJWKLVx = 6.
Eͽ x^2 = 96, so x 96.
Fͽ xab.
- The triangle on the left is a right isosceles triangle.
6HHFigure S.21.5ͽ
By the Pythagorean theorem, we have h^2 + h^2 = 8^2 ,
giving h 82.
By Example 1 in the lesson, the area of the parallelogram
is 10 h 802.
- Area =^12 u 20 hh 10 10 10 tan 72° 100 tan 72° |307.8.
ͼ6HHFigure S.21.6ͽ
33
3
3
3
3
xx
x
xx
x
x
33 x
Figure S.21.2
33
3
3
3
3
xx
x
xx
x
x
33 x
Figure S.21.3
33
3
3
3
3
xx
x
xx
x
x
33 x
Figure S.21.4
45°
8
10
h
Figure S.21.5
72°
10 10
h
Figure S.21.6