Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1

Lesson 14: Exploring Special Quadrilaterals


Example 1
Opposite angles in a quadrilateral are congruent. Prove that the quadrilateral must
EHDSDUDOOHORJUDPͼ௘6HHFigure 14.1௘ͽ
Solution
Following the labeling given in the diagram, because the angles in a quadrilateral
sum to 360°, we have 2x + 2y = 360°, giving x + y = 180°. This means that each pair of angles x and y in the
GLDJUDPFRQVWLWXWHDSDLURIVDPHVLGHLQWHULRUDQJOHVVXPPLQJWRƒIRUFLQJHDFKSDLURIRSSRVLWHVLGHVRI
WKH¿JXUHWREHSDUDOOHO:HKDYHDSDUDOOHORJUDP
Example 2
Suppose that A ͼ௘í௘ͽB ͼ௘௘ͽC ͼ௘௘ͽDQGD ͼ௘í௘ͽ:KDWW\SHRITXDGULODWHUDOLVABCD?
Solution
/RRNDWWKHPLGSRLQWVRIWKHGLDJRQDOV
Midpoint AC §· ̈ ̧©¹^32 ,9.
Midpoint BD §· ̈ ̧©¹^32 ,9.
The diagonals bisect each other, so we have a parallelogram, at the very least.
/RRNDWWKHOHQJWKVRIWKHGLDJRQDOV
AC  34 5.^22
BD  50 5.^22
These are the same. The parallelogram is a rectangle, at the very least.
/RRNDWWKHVORSHVRIWKHGLDJRQDOVHJPHQWV
Slope AC 43.

Slope BD (^) ^05 0.
These are not negative reciprocals, so the diagonals are not perpendicular. The rectangle is not a square.
ABCDLVDQRQVTXDUHUHFWDQJOH
y
y
x
x
Figure 14.1

Free download pdf