Geometry: An Interactive Journey to Mastery

(Greg DeLong) #1
Exploring Special Quadrilaterals
Lesson 14

Topics
x Properties of parallelograms.
x 7KHFODVVL¿FDWLRQRISDUDOOHORJUDPVUHFWDQJOHVVTXDUHVDQGUKRPEXVHVYLDWKHLUGLDJRQDOV
Results
x In a parallelogram,
ż RSSRVLWHVLGHVRIWKH¿JXUHDUHFRQJUXHQW
ż RSSRVLWHDQJOHVRIWKH¿JXUHDUHFRQJUXHQW
ż WKHGLDJRQDOVRIWKH¿JXUHELVHFWRQHDQRWKHU
 $QGWKHFRQYHUVHRIHDFKRIWKHVHKROGVWUXHͼ௘)RUH[DPSOHLIDTXDGULODWHUDOKDVRSSRVLWHVLGHVWKDW
DUHFRQJUXHQWWKHQWKDW¿JXUHLVDSDUDOOHORJUDP௘ͽ
x The diagonals of a rectangle bisect one another and are congruent. Conversely, if a quadrilateral has
GLDJRQDOVWKDWELVHFWRQHDQRWKHUDQGDUHFRQJUXHQWWKHQWKDW¿JXUHLVDUHFWDQJOH
x The diagonals of a rhombus bisect one another and are perpendicular. Conversely, if a quadrilateral has
GLDJRQDOVWKDWELVHFWRQHDQRWKHUDQGDUHSHUSHQGLFXODUWKHQWKDW¿JXUHLVDUKRPEXV
x The diagonals of a square bisect one another, are congruent, and are perpendicular. Conversely, if a
quadrilateral has diagonals that bisect one another, are congruent, and are perpendicular, then that
¿JXUHLVDVTXDUH
Summary
)RXUVLGHG¿JXUHVZLWKGLDJRQDOVKDYLQJVSHFLDOSURSHUWLHVPDNHSUDFWLFDODSSHDUDQFHVLQWKHUHDOZRUOG,QWKLV
lesson, we explore the implications of imposing conditions on the diagonals of a quadrilateral.

Free download pdf