Geotechnical Engineering

(Jeff_L) #1
DHARM

526 GEOTECHNICAL ENGINEERING

φ = 30°
δ = 15°
γ = 20 kN/m^2

15°

6m
Wall

a= 75°

b= 15°

Fig. 13.61 Battered wall with inclined surcharge (Ex. 13.15)

Ka =

sin ( )

sin .sin( )

sin( ).sin( )
sin( ).sin( )

2

2

2
1

αφ

ααδ

φδ φβ
αδ αβ

+

−+

+−
−+

L


N


M
M

O


Q


P
P

=

sin

sin .sin sin .sin
sin .sin

2

2

2

105

75 60 1^4515
60 90

°

°°+

°°
°°

L


N


M
M

O


Q


P
P

= 0.542

Kp =

sin ( )

sin .sin( ) sin( ).sin( )
sin( ).sin( )

2

2

2
1

αφ

ααδ φδ φβ
αδ αβ


+− ++
++

L


N


M
M

O


Q


P
P

=

sin

sin .sin sin .sin
sin .sin

.

2

2

2

45

75 90 1^4545
90 90

° 6 247

°°− °°
°°

L
N

M


O
Q

P


=

Total active thrust, Pa, per lineal metre of the wall

=

1
2

1
2

γHK^22 ..a=×××20 6 0 542 = 195 kN

Total passive resistance, Pp, per lineal metre of the wall

=

1
2

1
2

γHK^22 ..p=×××20 6 6 247 = 2,249 kN

Example 13.17: A vertical retaining wall 10 m high supports a cohesionless fill with γ = 18
kN/m^3. The upper surface of the fill rises from the crest of the wall at an angle of 20° with
the horizontal. Assuming φ = 30° and δ = 20°, determine the total active earth pressure using
the analytical approach of Coulomb. (S.V.U.—U.Tech. (Part-time)—Sep., 1982)

Free download pdf