DHARM
526 GEOTECHNICAL ENGINEERING
φ = 30°
δ = 15°
γ = 20 kN/m^2
15°
6m
Wall
a= 75°
b= 15°
Fig. 13.61 Battered wall with inclined surcharge (Ex. 13.15)
Ka =
sin ( )
sin .sin( )
sin( ).sin( )
sin( ).sin( )
2
2
2
1
αφ
ααδ
φδ φβ
αδ αβ
+
−+
+−
−+
L
N
M
M
O
Q
P
P
=
sin
sin .sin sin .sin
sin .sin
2
2
2
105
75 60 1^4515
60 90
°
°°+
°°
°°
L
N
M
M
O
Q
P
P
= 0.542
Kp =
sin ( )
sin .sin( ) sin( ).sin( )
sin( ).sin( )
2
2
2
1
αφ
ααδ φδ φβ
αδ αβ
−
+− ++
++
L
N
M
M
O
Q
P
P
=
sin
sin .sin sin .sin
sin .sin
.
2
2
2
45
75 90 1^4545
90 90
° 6 247
°°− °°
°°
L
N
M
O
Q
P
=
Total active thrust, Pa, per lineal metre of the wall
=
1
2
1
2
γHK^22 ..a=×××20 6 0 542 = 195 kN
Total passive resistance, Pp, per lineal metre of the wall
=
1
2
1
2
γHK^22 ..p=×××20 6 6 247 = 2,249 kN
Example 13.17: A vertical retaining wall 10 m high supports a cohesionless fill with γ = 18
kN/m^3. The upper surface of the fill rises from the crest of the wall at an angle of 20° with
the horizontal. Assuming φ = 30° and δ = 20°, determine the total active earth pressure using
the analytical approach of Coulomb. (S.V.U.—U.Tech. (Part-time)—Sep., 1982)