Advanced Methods of Structural Analysis

(Jacob Rumans) #1

398 11 Matrix Stiffness Method


Stiffness matrix for structure in whole in local coordinates is

kQ.55/D

2 6 6 6 6 6 4
0:667 0:333 0 0 0
0:333 0:667 0 0 0
00210
00120
0 0 001:5

3 7 7 7 7 7 5

EI 0

Matrix proceduresIntermediate matrix complex


kAQ TDEI 0

2 6 6 6 6 6 4
0:667 0:333 0 0 0
0:333 0:667 0 0 0
00210
00120
0 0 001:5

3 7 7 7 7 7 5



2 6 6 6 6 6 4
00
10
10
01
01

3 7 7 7 7 7 5

DEI 0

2 6 6 6 6 6 4
0:333 0
0:667 0
21
12
01:5

3 7 7 7 7 7 5

Stiffness matrix for structure in whole in global coordinates and inverse stiffness
matrix are


KDAkAQ

T
D


01100
00011

EI 0

2 6 6 6 6 6 4
0:333 0
0:667 0
21
12
01:5

3 7 7 7 7 7 5

DEI 0


2:667 1
13:5
;

K^1 D

1
EI 0


0:42 0:12
0:12 0:32

Vector of joint displacements


ZEDK^1 PED^1
EI 0


0:42 0:12
0:12 0:32

EI 0
0:02667
0:015


D
0:0094
0:0016



Vector of unknown bending moments of the second state is


ES 2 DkAQ TZDEI 0

2 6 6 6 6 6 4
0:333 0
0:667 0
21
12
01:5

3 7 7 7 7 7 5


0:0094
0:0016


DEI 0

2 6 6 6 6 6 6 6 6
0:00313
0:00627
0:0204
0:0126
0:0024

3 7 7 7 7 7 7 7 7
Free download pdf