13.5 Stability of Arches 487
3.Using expression (13.17a), the slope is
dw
d
DBncosnC
Ccos
n^2 1
: (13.19)
The slope at the support is
dw
ds
D';
the negative sign means the reactive momentM 0 and angle'have the opposite
directions. On the other hand
dw
ds
D
dw
Rd
;
so
dw
d
DR':
According to (13.15b)weget
'DC
EIsin ̨
kR^2
;so
dw
d
DC
EIsin ̨
kR
:
IfD ̨then the expression (13.19) becomes
Bncosn ̨C
Ccos ̨
n^2 1
DC
EIsin ̨
kR
:
After rearrangements this expression may be presented in form
Bncosn ̨CC
cos ̨
n^2 1
C
EIsin ̨
kR
D0: (13.20)
Equations (13.18)and(13.20) are homogeneous linear algebraic equations with re-
spect to unknown parametersBandC. The trivial solutionBDCD 0 corresponds
to state of the arch before the loss of stability. Nontrivial solution occurs if the fol-
lowing determinant is zero:
DD
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
sinn ̨
sin ̨
n^2 1
ncosn ̨I
cos ̨
n^2 1
C
EIsin ̨
kR
ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
D 0 (13.21)
The stability equation (13.21) may be presented as follows:
tann ̨D
nk 0
k 0 cot ̨C.n^2 1/
;k 0 D
kR
EI
: (13.22)