13.6 Compressed Rods with Lateral Loading 493
In expanded form these conditions are
D 1 sinn.lc/DD 2 Œsinn.lc/tannlcosn.lc/ ;
D 1 ncosn.lc/DD 2 nŒcosn.lc/Ctannlsinn.lc/C
F
P
:(13.34)
Solution of these equations is
D 1 D
Fsinnc
Pnsinnl
;D 2 D
Fsinn.lc/
Pntannl
:
Displacements at any point of the left part of the beam
y 1 D
Fsinnc
Pnsinnl
sinnx
Fc
Pl
x: (13.35)
Knowing (13.35) we may construct the equations for slope and internal forces.
In particularly, the bending moment for left part of the beam
M.x/DEI
d^2 y
dx^2
DEI
Fnsinnc
Psinnl
sinnx: (13.35a)
Limiting case
If a forceFis placed at the middle span.cD0:5l/, then for sectionxD0:5l
from (13.35)and(13.35a), we get the maximum deflection and bending moment
y
l
2
D
Fl^3
48 EI
3.tan##/
#^3
;#D
l
2
r
P
EI
D
nl
2
;
M
l
2
D
Fl
4
tan#
#
:
If a compressive forceP! 0 ,then
3.tan##/
#^3
!1;
tan#
#
!1;soy
l
2
!
Fl^3
48 EI
andM
l
2
!
Fl
4
:
Let us evaluate numerically effect of the compressive forceP. Since a critical
force for simply supported column is
PcrD
2 EI
l^2
;
then the dimensionless parameter#may be rewritten as
#D
2
s
P
Pcrit
: