Advanced Methods of Structural Analysis

(Jacob Rumans) #1

13.6 Compressed Rods with Lateral Loading 493


In expanded form these conditions are


D 1 sinn.lc/DD 2 Œsinn.lc/tannlcosn.lc/ ;

D 1 ncosn.lc/DD 2 nŒcosn.lc/Ctannlsinn.lc/C

F
P

:(13.34)

Solution of these equations is


D 1 D

Fsinnc
Pnsinnl

;D 2 D

Fsinn.lc/
Pntannl

:

Displacements at any point of the left part of the beam


y 1 D

Fsinnc
Pnsinnl

sinnx

Fc
Pl

x: (13.35)

Knowing (13.35) we may construct the equations for slope and internal forces.
In particularly, the bending moment for left part of the beam


M.x/DEI

d^2 y
dx^2

DEI

Fnsinnc
Psinnl

sinnx: (13.35a)

Limiting case


If a forceFis placed at the middle span.cD0:5l/, then for sectionxD0:5l
from (13.35)and(13.35a), we get the maximum deflection and bending moment


y


l
2


D

Fl^3
48 EI

3.tan##/
#^3

;#D
l
2

r
P
EI

D

nl
2

;

M


l
2


D

Fl
4

tan#
#

:

If a compressive forceP! 0 ,then


3.tan##/
#^3

!1;

tan#
#

!1;soy


l
2


!

Fl^3
48 EI

andM


l
2


!

Fl
4

:

Let us evaluate numerically effect of the compressive forceP. Since a critical
force for simply supported column is


PcrD

2 EI
l^2

;

then the dimensionless parameter#may be rewritten as


#D
2

s
P
Pcrit

:
Free download pdf