13.6 Compressed Rods with Lateral Loading 493
In expanded form these conditions are
D 1 sinn.lc/DD 2 Œsinn.lc/tannlcosn.lc/ ;D 1 ncosn.lc/DD 2 nŒcosn.lc/Ctannlsinn.lc/CF
P:(13.34)Solution of these equations is
D 1 DFsinnc
Pnsinnl;D 2 DFsinn.lc/
Pntannl:Displacements at any point of the left part of the beam
y 1 DFsinnc
PnsinnlsinnxFc
Plx: (13.35)Knowing (13.35) we may construct the equations for slope and internal forces.
In particularly, the bending moment for left part of the beam
M.x/DEId^2 y
dx^2DEIFnsinnc
Psinnlsinnx: (13.35a)Limiting case
If a forceFis placed at the middle span.cD0:5l/, then for sectionxD0:5l
from (13.35)and(13.35a), we get the maximum deflection and bending moment
y
l
2
DFl^3
48 EI3.tan##/
#^3;#D
l
2r
P
EIDnl
2;M
l
2
DFl
4tan#
#:If a compressive forceP! 0 ,then
3.tan##/
#^3!1;tan#
#!1;soy
l
2
!Fl^3
48 EIandM
l
2
!Fl
4:Let us evaluate numerically effect of the compressive forceP. Since a critical
force for simply supported column is
PcrD2 EI
l^2;then the dimensionless parameter#may be rewritten as
#D
2s
P
Pcrit: