14.2 Free Vibrations of Systems with Finite Number Degrees of Freedom: Force Method 523
If a structure has ndegrees of freedom, then the modal matrix ˆ D
' 1 ' 2 ::: 'n
̆
.
Example 14.1.Design diagram of the frame is shown in Fig.14.8a. Find eigenfre-
quincies and mode shape vibration.
P 1 =1
1 ⋅l P^2 =1
M 1 M 2
1 ⋅h
l
h
m
EI
q 1
q 2
2 EI
a
1.1328
m
1.0
w 1 -first mode
0.8828
b
m 1.0
w 2 -second mode
Fig. 14.8 (a) Design diagram of the frame and unit states; (b) Mode shapes of vibration
Solution.The system has two degrees of freedom. Generalized coordinate areq 1
andq 2. We need to apply unit forces in direction ofq 1 andq 2 , and construct the
bending momens deagram. Unit displacements are
ı 11 D
M 1 M 1
EI
D
1
2 EI
1
2
1 ll
2
3
1 lC
1
EI
1 lh 1 lD
l^3
6 EI
C
l^2 h
EI
I
ı 22 D
M 2 M 2
EI
D
1
EI
1
2
1 hh
2
3
1 hD
h^3
3 EI
I
ı 12 Dı 21 D
M 1 M 2
EI
D
1
EI
1
2
1 hh 1 lD
h^2 l
2 EI
Let hD2l and ı 0 Dl^3 =6EI. In this case ı 11 D13ı 0 Iı 22 D16ı 0 I
ı 12 Dı 21 D12ı 0.
Equation for calculation of amplitudes (14.4)
13ı 0 m!^2 1
A 1 C12ı 0 m!^2 A 2 D0;
12ı 0 m!^2 A 1 C
16ı 0 m!^2 1
A 2 D0:
(a)