Modern Control Engineering

(Chris Devlin) #1

Note that the element of the jth row and ith column of the product A(adjA)is


Hence,A(adjA)is a diagonal matrix with diagonal elements equal to , or


A(adjA)= I


Similarly, the element in the jth row and ith column of the product (adjA)Ais


Hence, we have the relationship


A(adjA)=(adjA)A= I (C–1)


Thus


whereAijis the cofactor of aijof the matrix A. Thus, the terms in the ith column of A^1


are l/ times the cofactors of the ith row of the original matrix A. For example, if


then the adjoint of Aand the determinant @A@are respectively found to be


A= C


1 2 0


3 - 1 - 2


1 0- 3


S


@A@


G


A 11


@A@


A 21


@A@


p


An 1


@A@


A 12


@A@


A 22


@A@


p


An 2


@A@


oo o


A 1 n


@A@


A 2 n


@A@


p


Ann


@A@


A W



  • (^1) =adjA


@A@


=


@A@


a


n

k= 1

bjkaki= a


n

k= 1

Akjaki=dij@A@


@A@


@A@


a


n

k= 1

ajkbki= a


n

k= 1

ajkAik=dji@A@


Appendix C / Vector-Matrix Algebra 877


adjA=G W


= C


3 6- 4


7 - 3 2


1 2- 7


S


`


3 - 1


1 0


-


12


10


` `


1 2


3 - 1


`



  • `


3 - 2


1 - 3


` `


1 0


1 - 3


-


1 0


3 - 2


`


`


- 1 - 2


0 - 3


-


2 0


0 - 3


` `


2 0


- 1 - 2


`

Free download pdf