Note that the element of the jth row and ith column of the product A(adjA)is
Hence,A(adjA)is a diagonal matrix with diagonal elements equal to , or
A(adjA)= I
Similarly, the element in the jth row and ith column of the product (adjA)Ais
Hence, we have the relationship
A(adjA)=(adjA)A= I (Cā1)
Thus
whereAijis the cofactor of aijof the matrix A. Thus, the terms in the ith column of A^1
are l/ times the cofactors of the ith row of the original matrix A. For example, if
then the adjoint of Aand the determinant @A@are respectively found to be
A= C
1 2 0
3 - 1 - 2
1 0- 3
S
@A@
G
A 11
@A@
A 21
@A@
p
An 1
@A@
A 12
@A@
A 22
@A@
p
An 2
@A@
oo o
A 1 n
@A@
A 2 n
@A@
p
Ann
@A@
A W
- (^1) =adjA
@A@
=
@A@
a
nk= 1bjkaki= a
nk= 1Akjaki=dij@A@
@A@
@A@
a
nk= 1ajkbki= a
nk= 1ajkAik=dji@A@
Appendix C / Vector-Matrix Algebra 877
adjA=G W
= C
3 6- 4
7 - 3 2
1 2- 7
S
`
3 - 1
1 0
-
12
10
` `
1 2
3 - 1
`
- `
3 - 2
1 - 3
` `
1 0
1 - 3
-
1 0
3 - 2
`
`
- 1 - 2
0 - 3
-
2 0
0 - 3
` `
2 0
- 1 - 2
`