Computational Physics - Department of Physics

(Axel Boer) #1

16.10 Computing the∇^2 ΨC/ΨCRatio 527


which yields the closed-form expression


∂fi j
∂ri j=

ai j
( 1 +βi jri j)^2. (16.34)

16.10Computing the∇^2 ΨC/ΨCRatio


For deriving this expression we note first that Eq. (16.29) can be written as


∇kΨC=

k− 1

i= 1

1

gik
∇kgik+

N

i=k+ 1

1

gki
∇kgki.

After multiplying byΨCand taking the gradient on both sides we get,


∇^2 kΨC=∇kΨC·

(k− 1

i= 1

1

gik
∇kgik+

N

i=k+ 1

1

gki
∇kgki

)

+ΨC∇k·

( N


i=k+ 1

1

gki
∇kgki+

N

i=k+ 1

1

gki
∇kgki

)

=ΨC

(

∇kΨC
ΨC

) 2

+ΨC∇k·

( N


i=k+ 1

1

gki
∇kgki+

N

i=k+ 1

1

gki
∇kgki

)

. (16.35)

Now,


∇k·

(

1

gik∇kgik

)

=∇k

(

1

gik

)

·∇kgik+

1

gik∇k·∇kgik

=−

1

g^2 ik
∇kgik·∇kgik+

1

gik∇k·

(

rik
rik

∂gik
∂rik

)

=−^1

g^2 ik

(∇kgik)^2

+

1

gik

[

∇k

(

1

rik

∂gik
∂rik

)

·rik+

(

1

rik

∂gik
∂rik

)

∇k·rik

]

=−

1

g^2 ik

(

rik
rik

∂gik
∂rik

) 2

+^1

gik

[

∇k

(

1

rik

∂gik
∂rik

)

·rik+

(

1

rik

∂gik
∂rik

)

d

]

=−^1

g^2 ik

(

∂gik
∂rik

) 2

+^1

gik

[

∇k

(

1

rik

∂gik
∂rik

)

·rik+

(

1

rik

∂gik
∂rik

)

d

]

, (16.36)

withdbeing the number of spatial dimensions.
Moreover,


∇k

(

1

rik

∂gik
∂rik

)

=

rik
rik


∂rik

(

1

rik

∂gik
∂rik

)

=

rik
rik

(


1

r^2 ik

∂gik
∂rik+

1

rik

∂^2 gik
∂r^2 ik

)

.
Free download pdf