16.10 Computing the∇^2 ΨC/ΨCRatio 527
which yields the closed-form expression
∂fi j
∂ri j=
ai j
( 1 +βi jri j)^2. (16.34)
16.10Computing the∇^2 ΨC/ΨCRatio
For deriving this expression we note first that Eq. (16.29) can be written as
∇kΨC=
k− 1
∑
i= 1
1
gik
∇kgik+
N
∑
i=k+ 1
1
gki
∇kgki.
After multiplying byΨCand taking the gradient on both sides we get,
∇^2 kΨC=∇kΨC·
(k− 1
∑
i= 1
1
gik
∇kgik+
N
∑
i=k+ 1
1
gki
∇kgki
)
+ΨC∇k·
( N
∑
i=k+ 1
1
gki
∇kgki+
N
∑
i=k+ 1
1
gki
∇kgki
)
=ΨC
(
∇kΨC
ΨC
) 2
+ΨC∇k·
( N
∑
i=k+ 1
1
gki
∇kgki+
N
∑
i=k+ 1
1
gki
∇kgki
)
. (16.35)
Now,
∇k·
(
1
gik∇kgik
)
=∇k
(
1
gik
)
·∇kgik+
1
gik∇k·∇kgik
=−
1
g^2 ik
∇kgik·∇kgik+
1
gik∇k·
(
rik
rik
∂gik
∂rik
)
=−^1
g^2 ik
(∇kgik)^2
+
1
gik
[
∇k
(
1
rik
∂gik
∂rik
)
·rik+
(
1
rik
∂gik
∂rik
)
∇k·rik
]
=−
1
g^2 ik
(
rik
rik
∂gik
∂rik
) 2
+^1
gik
[
∇k
(
1
rik
∂gik
∂rik
)
·rik+
(
1
rik
∂gik
∂rik
)
d
]
=−^1
g^2 ik
(
∂gik
∂rik
) 2
+^1
gik
[
∇k
(
1
rik
∂gik
∂rik
)
·rik+
(
1
rik
∂gik
∂rik
)
d
]
, (16.36)
withdbeing the number of spatial dimensions.
Moreover,
∇k
(
1
rik
∂gik
∂rik
)
=
rik
rik
∂
∂rik
(
1
rik
∂gik
∂rik
)
=
rik
rik
(
−
1
r^2 ik
∂gik
∂rik+
1
rik
∂^2 gik
∂r^2 ik