84 1 Mathematical Physics
N=6;
∑
yn= 29 .5;∑
xn=3;∑
x^2 n= 19
∑
xn^3 =27;∑
xn^4 =115;∑
xnyn= 21 .3;∑
x^2 nyn= 158. 1Solving (1), (2) and (3) we finda 0 = 0 .582;a 1 =− 1 .182;a 2 = 1. 556Fig. 1.18Least square fit of the parabola
1.102C=^2 πε^0
ln
(b
a) (1)
From propagation of errorsσc=[(
∂c
∂b) 2
σb^2 +(
∂c
∂a) 2
σa^2] 1 / 2
(2)
∂c
∂b=−
c
blnba;
∂c
∂a=
c
alnba(3)
Using (1), (2) and (3) and simplifyingσc
c=
[(
lnb
a)]− 1 / 2 [
σa^2
a^2+
σa^2
b^2] 1 / 2
Substitutinga=10 mm,b=20 mm,σa=1 mm andσb=1mm,σc/c=
0. 16