288 4 Thermodynamics and Statistical Physics
uν=8 πν^2
c^3kT (Rayleigh-Jeans law)(b) Ifhν/kT1 i.ehc/λkT1 then we can ignore 1 in the denominator
in comparison with the exponential term in Planck’s formula
uλdλ=c 1 e−c^2 /λkTdλ (Wien’s distribution law)
where the constants,c 1 = 8 πhcandc 2 =hc4.71uλdλ=
8 πhc
λ^5.
1
ehc/λkT− 1dλ (Planck’s formula)The wavelengthλmcorresponding to the maximum of the distribution curve
is obtained from the condition
(
duλ
dλ)
λ=λm= 0
Differentiating and writinghc/kTλm=β,givese−β+β
5− 1 = 0
This is a transcental equation and has the solution
β= 4. 9651 ,so thatλmT=hc
4. 9651 k=b=constant.Thus, the constantb=6. 626068 × 10 −^34 × 2. 99792 × 108
4. 9651 × 1. 38065 × 10 −^23
= 2. 8978 × 10 −^3 m-Ka value which is in excellent agreement with the experiment.4.72 By definition
u=∫
uνdν=aT^4 (1)Inserting Planck’s formula in (1)u=aT^4 =8 πh
c^3∫∞
0ν^3 dν
ehν/kT− 1=
8 πk^4 T^4
h^3 c^3∫∞
0x^3 dx
ex− 1
wherex=hν/kTa=8 πk^4
h^3 c^3∫∞
0x^3 (e−x+e−^2 x+...e−rx+...)Now,∫∞
0 x(^3) e−rxdx= 6
r^4 , andΣ
∞
r= 1
1
r^4 =
π^2
90
a=
48 πk^4
h^3 c^3
.
π^4
90=
8
15
π^5 k^4
h^3 c^3∴σ=ac
4=
2
15
π^5 k^4
h^3 c^2