8.3 Solutions 449
ΔEc=3
5
1
4 πε 0e^2
R[Z(Z+1)−Z(Z−1)]
=
6 Ze^2
5 Re^2
4 πε 0= 1. 2 × 1. 44
Z
R
MeV-fmEquatingΔEctoMSi−MA= 3. 48 + 2 × 0. 51 = 4 .5 MeV, andZ=13,
we findRfrom whichro=R/A^1 /^3 can be determined, whereA=27. Thus
ro= 1 .66 fm.8.5ΔPx.Δx=(uncertainty principle)
orcΔPx=c
Δx=
197 .3MeV−fm
5fm= 39 .6MeVThe kinetic energyT=c^2 p^2
2 Mc^2=
(39.6)^2
2 × 940
= 0 .83 MeV8.6 The mass-energy equation for positron decay is
M(^14 O)−M(^14 N)= 2 me+Eβ(max)+Eγ
931. 5
= 2 × 0. 000548 +1. 835 + 2. 313
931. 5
= 0. 005549
or M(^14 O)= 14. 003074 + 0. 005549 = 14 .008623 amu8.3.2 ElectricPotentialandEnergy ........................
8.7 The charge densityρ= 3 ze/ 4 πR^3. Consider a spherical shell of radiirand
r+dr.
The volume of the shell is 4πr^2 dr. The charge in the shellq′=(4πr^2 dr)ρ.
The electrostatic energy due to the chargeq′and the charge (q′′) of the sphere
of radiusr, which is^43 πr^3 ρ, is calculated by imaginingq′′to be deposited at
the centre. The charge outside the sphere of radiusrdoes not contribute to this
energy (Fig. 8.8). Thus
dU=q′q′′
4 πε 0 r=
(4πr^2 drρ)(4πr^3 ρ/3)
4 πε 0 r=
4 π
ε 0ρ^2 r^4 drThe total electrostatic energy is obtained by integrating the above expression
in the limits 0 toR,Fig. 8.8Spherical shell of
radius R