1000 Solved Problems in Modern Physics

(Grace) #1

74 1 Mathematical Physics


Residue at exp(πi/4)=limz→exp(π 4 i)

{

z−exp

(

πi
4

)

1

z^4 + 1

}

=

1

4 z^3

=

1

4

exp

(


3 πi
4

)

Residue at exp(3πi/4)=limz→exp( 3 π 4 i)

{

z−exp

(

3 πi
4

)

1

z^4 + 1

}

=

1

4 z^3

=

1

4

exp

(


3 πi
4

)

Thus

c

dz
z^4 + 1

= 2 πi

{

1

4

exp

(


3 πi
4

)

+

1

4

exp

(


3 πi
4

)}

=

π

2
Thus
∫ R

−R

dx
x^4 + 1

+


dz
z^4 + 1

=

π

2
Taking the limit of both sides asR→∞

limR→∞

∫+R

−R

dx
x^4 + 1

=

∫∞

−∞

dx
x^4 + 1

=

π

2
It follows that
∫∞

0

dx
x^4 + 1

=

π
2


2

Fig. 1.17Closed contour
consisting of line from−R
to R and the semi-circleΓ


1.3.12 CalculusofVariation...............................


1.89LetI=


∫x 1

x 0

F(x,y,y′)dx (1)

HereI=

∫x 1

x 0


1 +

(

dy
dx

) 2

dx (2)

Now the Euler equation is
∂F
∂y


d
dx

(

∂F

∂y′

)

=0(3)
Free download pdf