74 1 Mathematical Physics
Residue at exp(πi/4)=limz→exp(π 4 i){
z−exp(
πi
4)
1
z^4 + 1}
=
1
4 z^3=
1
4
exp(
−
3 πi
4)
Residue at exp(3πi/4)=limz→exp( 3 π 4 i){
z−exp(
3 πi
4)
1
z^4 + 1}
=
1
4 z^3=
1
4
exp(
−
3 πi
4)
Thus
∮cdz
z^4 + 1= 2 πi{
1
4
exp(
−
3 πi
4)
+
1
4
exp(
−
3 πi
4)}
=
π
√
2
Thus
∫ R−Rdx
x^4 + 1+
∫
dz
z^4 + 1=
π
√
2
Taking the limit of both sides asR→∞limR→∞∫+R
−Rdx
x^4 + 1=
∫∞
−∞dx
x^4 + 1=
π
√
2
It follows that
∫∞0dx
x^4 + 1=
π
2√
2
Fig. 1.17Closed contour
consisting of line from−R
to R and the semi-circleΓ
1.3.12 CalculusofVariation...............................
1.89LetI=
∫x 1x 0F(x,y,y′)dx (1)HereI=∫x 1x 0√
1 +
(
dy
dx) 2
dx (2)Now the Euler equation is
∂F
∂y−
d
dx(
∂F
∂y′