74 1 Mathematical Physics
Residue at exp(πi/4)=limz→exp(π 4 i)
{
z−exp
(
πi
4
)
1
z^4 + 1
}
=
1
4 z^3
=
1
4
exp
(
−
3 πi
4
)
Residue at exp(3πi/4)=limz→exp( 3 π 4 i)
{
z−exp
(
3 πi
4
)
1
z^4 + 1
}
=
1
4 z^3
=
1
4
exp
(
−
3 πi
4
)
Thus
∮
c
dz
z^4 + 1
= 2 πi
{
1
4
exp
(
−
3 πi
4
)
+
1
4
exp
(
−
3 πi
4
)}
=
π
√
2
Thus
∫ R
−R
dx
x^4 + 1
+
∫
dz
z^4 + 1
=
π
√
2
Taking the limit of both sides asR→∞
limR→∞
∫+R
−R
dx
x^4 + 1
=
∫∞
−∞
dx
x^4 + 1
=
π
√
2
It follows that
∫∞
0
dx
x^4 + 1
=
π
2
√
2
Fig. 1.17Closed contour
consisting of line from−R
to R and the semi-circleΓ
1.3.12 CalculusofVariation...............................
1.89LetI=
∫x 1
x 0
F(x,y,y′)dx (1)
HereI=
∫x 1
x 0
√
1 +
(
dy
dx
) 2
dx (2)
Now the Euler equation is
∂F
∂y
−
d
dx
(
∂F
∂y′