Contents xvii
5.13.Combined Potential (Tennessee)^56
Harmonic Oscillator
5.14.
5.15.
5.16.
5.17.
5.18.
56
56
57
57
58
5.19.
5.20.
5.21.
58
59
59
60
60
60
60
61
61
61
62
62
63
63
63
63
63
64
64
64
64
65
66
66
66
66
67
67
67
68
5.43.
5.44.
5.38.
5.39.
5.40.
5.41.
5.42.
5.37.
5.31.
5.32.
5.33.
5.34.
5.35.
5.36.
5.22.
5.23.
5.24.
5.25.
5.26.
5.27.
5.28.
5.29.
5.30.
Given a Gaussian(MIT)
Harmonic Oscillator ABCs (Stony Brook)
NumberStates (Stony Brook)
Coupled Oscillators (MIT)
Time-DependentHarmonicOscillator I
(Wisconsin-Madison)
Time-Dependent HarmonicOscillator II (Michigan State)
Switched-on Field (MIT)
Cut the Spring! (MIT)
Angular Momentum and Spin
Given Another Eigenfunction(Stony Brook)
Algebra ofAngular Momentum (Stony Brook)
Triplet Square Well (Stony Brook)
Dipolar Interactions (Stony Brook)
Spin-Dependent Potential (MIT)
Three Spins (Stony Brook)
Constant Matrix Perturbation (Stony Brook)
Rotating Spin (Maryland, MIT)
Nuclear Magnetic Resonance(Princeton, Stony Brook)
VariationalCalculations
Anharmonic Oscillator (Tennessee)
Linear Potential I (Tennessee)
Linear Potential II (MIT, Tennessee)
Return of Combined Potential (Tennessee)
Quartic in Three Dimensions(Tennessee)
Halved Harmonic Oscillator (Stony Brook, Chicago (b),
Princeton (b))
Helium Atom (Tennessee)
PerturbationTheory
Momentum Perturbation (Princeton)
Ramp in SquareWell(Colorado)
Circle withField(Colorado, Michigan State)
Rotator in Field (Stony Brook)
Finite Size of Nucleus(Maryland, Michigan State,
Princeton, Stony Brook)
Uand Perturbation (Princeton)
Relativistic Oscillator (MIT, Moscow Phys-Tech, Stony
Brook(a))