4 1 Mathematical Physics
Γ(n)=∫∞
0e−xxn−^1 dx (Re n>0) (1.11)Γ(n+1)=nΓ(n) (1.12)Ifnis a positive integerΓ(n+1)=n! (1.13)Γ(
1
2
)
=
√
π;Γ(
3
2
)
=
√
π
2;Γ
(
5
2
)
=
3
4
√
π (1.14)Γ
(
n+1
2
)
=
1. 3. 5 ...(2n−1)√
π
2 n(n= 1 , 2 , 3 ,...) (1.15)Γ
(
−n+1
2
)
=
(−1)n 2 n√
π
1. 3. 5 ...(2n−1)(n= 1 , 2 , 3 ,...) (1.16)Γ(n+1)=n!∼=√
2 πnnne−n (Stirling’s formula) (1.17)
n→∞Beta functionB(m,n) is defined asB(m,n)=Γ(m)Γ(n)
Γ(m+n)(1.18)
B(m,n)=B(n,m) (1.19)B(m,n)= 2∫π/ 20sin^2 m−^1 θcos^2 n−^1 θdθ (1.20)B(m,n)=∫∞
0tm−^1
(1+t)m+ndt (1.21)Special funtions, properties and differential equations
Hermite functions:
Differential equation:
y′′− 2 xy′+ 2 ny= 0 (1.22)whenn= 0 , 1 , 2 ,...then we get Hermite’s polynomialsHn(x)ofdegreen,given
by
Hn(x)=(−1)nex
2 dn
dxn(
e−x2 )
(Rodrigue’s formula)