204 3 Quantum Mechanics – IIClassically,E=ka2
2 =(
n+^12)
ω(quantum mechanically)≈nω(n→∞)
Thereforea^2 =^2 nkω=( 2 n
k)(k
m) 1 / 2
=√^2 kmn =^2 αn 2ω=√
k
m
ora=√
2 n
α(6)
Sinβ=ξ
√
2 n=
αx
√
2 n=
x
a
Thereforecosβ=(a^2 −x^2 )(^12)
a
(7)
Using (6) and (7) in (5)P(x)=exp(−ξ^2 exp(2nβ^2 ))
π(a^2 −x^2 )^1 /^2(8)
Now whenn→∞,sinβ→βand
β→ξ/√
2 n,andexp(−ξ^2 )exp(2nβ^2 )→1)
ThereforeP(x)=π√a^12 −x 2 (classical)3.56 One can expect the probability of finding the particle of massmat distancex
from the equilibrium position to be inversely proportional to the velocity
P(x)=A
v(1)
whereA=normalization constant. The equation for S.H.O. is
d^2 x
dt^2+ω^2 x= 0which has the solution
x=asinωt;(att= 0 ,x=0)
whereais the amplitude.v=dx
dt=ω√
a^2 −x^2 (2)Using (2) in (1)
P(x)=A/ω√
a^2 −x^2 (3)
We can find the normalization constant∫ A.P(x)dx=∫a−aAdx
ω√
a^2 −x^2=
Aπ
ω= 1
Therefore,
A=ω
π(4)
Using (4) in (3), the normalized distribution is