36 1 Mathematical Physics
+
∫ 4
0(
y^2
8+y)
ydy
4+
(
y^2
8−y)
dy (alongy^2 = 8 x)=+
16
3
1.8 (a) It is sufficient to show that CurlF= 0∇×F=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
ijk
∂
∂x∂
∂y∂
∂z
2 xy+z^2 x^22 xz∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
=ˆi. 0 −ˆj(2z− 2 z)+kˆ(2x− 2 x)= 0(b) dΦ=F.dr=((2xy+z^2 )ˆi+x^2 ˆj+ 2 xzkˆ)).(ˆidx+ˆjdy+kˆdz)
=(2xy+z^2 )dx+x^2 dy+ 2 xzdz
=(2xydx+x^2 dy)+(z^2 dx+ 2 xzdz)
=d(x^2 y)+d(z^2 x)=d(x^2 y+xz^2 )
ThereforeΦ=x^2 y+xz^2 +constant
(c) Work done=Φ 2 −Φ 1 = 5. 0
1.9 LetU=x+y;V=x−y
∂U
∂x=1;
∂V
∂y=− 1
The curvesy=x^2 andy^2 = 8 xintersect at (0, 0) and (2, 4).
∫∫(
∂U
∂x−
∂V
∂x)
dxdy=∫∫S(1−(−1))dxdy= 2∫ 2x= 0∫ 2 √ 2 xy=x^2dxdy= 2∫ 20[∫ 2 √ 2 xx^2dy]
dx= 2∫ 20(2√
2√
x−x^2 )dx= 2[
4√
2
3
x^3 /^2 −
x^3
3] 20=
16
3
This is in agreement with the value obtained in Problem 1.7 for the line inte-
gral.1.10 Use the divergence theorem
∫∫
A.ds=
∫∫∫
∇.AdνBut∇.A=∂
∂xx^3 +∂
∂yy^3 +∂
∂zz^3= 3 x^2 + 3 y^2 + 3 z^2 =3(x^2 +y^2 +z^2 )= 3 R^2
∫∫
A.ds=∫∫∫
3 R^2 dν=∫
(3R^2 )(4πR^2 dR)= 12 π∫
R^4 dR=12
5
πR^51.11
∫
cA.dr=∫
(2yˆi− 3 xˆj+zkˆ).(dxiˆ+dyˆj+dzkˆ)=
∫
(2ydx− 3 xdy+zdz)