1.3 Solutions 53
1.45 (a)
∫
tan^6 xsec^4 xdx=
∫
tan^6 x(tan^2 x+1) sec^2 xdx
=
∫
(tanx)^8 sec^2 xdx+
∫
tan^6 xsec^2 xdx
=
∫
(tanx)^8 d(tanx)+
∫
(tanx)^6 d(tanx)
=
tan^9 x
9
+
tan^7 x
7
+C
(b)
∫
tan^5 xsec^3 xdx=
∫
tan^4 xsec^2 xsecxtanxdx
=
∫
(sec^2 x−1)^2 sec^2 xsecxtanxdx
=
∫
(sec^6 x−2sec^4 x+sec^2 x)d(secx)
=
sec^7 x
7
− 2
sec^5 x
5
+
sec^3 x
3
+C
1.46
∫ 4
2
2 x+ 4
x^2 − 4 x+ 8
dx=
∫ 4
2
2 x− 4 + 8
(x−2)^2 + 4
dx
=
∫ 4
2
2 x− 4
(x−2)^2 + 4
dx+ 8
∫ 4
2
dx
(x−2)^2 + 4
=ln [(x−2)^2 +4]^42 +(8/2) tan−^11
=ln 2+π
1.47 Let us first find the area OMP which is half of the required area OPP′.Forthe
upper branch of the curve,y=x^3 /^2 , and summing up all the strips between
the limitsx=0 andx=4, we get
Area OMP=
∫ 4
0 ydx=
∫ 4
0 x
3 / (^2) dx=^64
5.
Hence area OPP′= 2 x^645 = 25 .6 units.
Note: for the lower branchy=x^3 /^2 and the area will be− 64 /5. The area
will be negative simply because for the lower branch they-coordinates are
negative. The result for the area OPP′pertains to total area regardless of sign.
Fig. 1.12Semi-cubical
parabola