1.3 Solutions 53
1.45 (a)∫
tan^6 xsec^4 xdx=∫
tan^6 x(tan^2 x+1) sec^2 xdx=
∫
(tanx)^8 sec^2 xdx+∫
tan^6 xsec^2 xdx=
∫
(tanx)^8 d(tanx)+∫
(tanx)^6 d(tanx)=
tan^9 x
9+
tan^7 x
7+C
(b)∫
tan^5 xsec^3 xdx=∫
tan^4 xsec^2 xsecxtanxdx=
∫
(sec^2 x−1)^2 sec^2 xsecxtanxdx=
∫
(sec^6 x−2sec^4 x+sec^2 x)d(secx)=
sec^7 x
7− 2
sec^5 x
5+
sec^3 x
3+C
1.46
∫ 4
22 x+ 4
x^2 − 4 x+ 8dx=∫ 4
22 x− 4 + 8
(x−2)^2 + 4dx=
∫ 4
22 x− 4
(x−2)^2 + 4dx+ 8∫ 4
2dx
(x−2)^2 + 4
=ln [(x−2)^2 +4]^42 +(8/2) tan−^11
=ln 2+π1.47 Let us first find the area OMP which is half of the required area OPP′.Forthe
upper branch of the curve,y=x^3 /^2 , and summing up all the strips between
the limitsx=0 andx=4, we get
Area OMP=
∫ 4
0 ydx=∫ 4
0 x3 / (^2) dx=^64
5.
Hence area OPP′= 2 x^645 = 25 .6 units.
Note: for the lower branchy=x^3 /^2 and the area will be− 64 /5. The area
will be negative simply because for the lower branch they-coordinates are
negative. The result for the area OPP′pertains to total area regardless of sign.
Fig. 1.12Semi-cubical
parabola