1.3 Solutions 67
1.3.9 LaplaceTransforms
1.72
dNA(t)
dt
=−λANA(t)(1)
dNB(t)
dt
=−λBNB(t)+λANA(t)(2)
Applying Laplace transform to (1)
sL(NA)−NA(0)=−λAL(NA)
orL(NA)=
NA^0
s+λA
=
N^0 A
s−(−λA)
(3)
∴NA=N^0 Aexp(–λAt)(4)
Applying the Laplace transform to (2)
sL(NB)−NB(0)=−λBL(NB)+λAL(NA)(5)
Using (3) in (4) and puttingN 2 (0)= 0
L(NB)(s+λB)=
λAN^0 A
s+λA
orL(NB)=
λAN^0 A
(s+λA)(s+λB)
=
λANA^0
λB−λA
[
1
s+λA
−
1
s+λB
]
=
λANA^0
λB−λA
[
1
s−(−λA)
−
1
s−(−λB)
]
∴NB=
λAN^0 A
λB−λA
[
e−λAt−e−λBt
]
1.73
dNA
dt
=−λANA (1)
dNB
dt
=−λBNB+λANA (2)
dNC
dt
=+λBNB (3)
Applying the Laplace transform to (3)
sL{NC}−NC(0)=λBL{NB}=
λBλAN^0 A
(s+λA)(s+λB)
GivenNc(0)= 0
L{Nc}=
λAλBN^0 A
s(s+λA)(s+λB)
=
λAλBN^0 A
(λB−λA)s
[
1
s+λA
−
1
s+λB