1.3 Solutions 67
1.3.9 LaplaceTransforms
1.72
dNA(t)
dt=−λANA(t)(1)dNB(t)
dt=−λBNB(t)+λANA(t)(2)Applying Laplace transform to (1)sL(NA)−NA(0)=−λAL(NA)orL(NA)=NA^0
s+λA=
N^0 A
s−(−λA)(3)
∴NA=N^0 Aexp(–λAt)(4)Applying the Laplace transform to (2)sL(NB)−NB(0)=−λBL(NB)+λAL(NA)(5)Using (3) in (4) and puttingN 2 (0)= 0L(NB)(s+λB)=λAN^0 A
s+λAorL(NB)=λAN^0 A
(s+λA)(s+λB)=
λANA^0
λB−λA[
1
s+λA−
1
s+λB]
=
λANA^0
λB−λA[
1
s−(−λA)−
1
s−(−λB)]
∴NB=
λAN^0 A
λB−λA[
e−λAt−e−λBt]
1.73
dNA
dt=−λANA (1)dNB
dt=−λBNB+λANA (2)dNC
dt=+λBNB (3)Applying the Laplace transform to (3)sL{NC}−NC(0)=λBL{NB}=λBλAN^0 A
(s+λA)(s+λB)
GivenNc(0)= 0L{Nc}=λAλBN^0 A
s(s+λA)(s+λB)=λAλBN^0 A
(λB−λA)s[
1
s+λA−
1
s+λB