68 1 Mathematical Physics
=
λAλBNA^0
(λB−λA)
[
1
λA
{
1
s
−
1
s+λA
}
−
1
λB
{
1
s
−
1
s+λB
}]
=N 10
[
1
s
−
λB
(λB−λA)
1
(s+λA)
+
λA
(λB−λA)
1
(s+λB)
]
∴Nc=NA^0
[
1 +
1
λB−λA
(λAexp(−λBt)−λBexp(−λAt))
]
1.74 (a)L{eax}=
∫∞
0
e−sxeaxdx=
∫∞
0
e−(s−a)xdx
=
1
s−a
,ifs>a
(b) and (c). From part (a),L(eax)=s−^1 aReplaceabyai
L(eiax)=L{cosax+isinax}
=L{cosax}+iL{sinax}
=
1
s−ai
=
s+ai
s^2 +a^2
=
s
s^2 +a^2
+
ia
s^2 +a^2
Equating real and imaginary parts:
L{cosax}=
s
s^2 +a^2
;L{sinax}=
a
x^2 +a^2
1.3.10 Special Functions
1.75 ExpressHnin terms of a generating functionT(ξ,s).
T(ξ,s)=exp[ξ^2 −(s−ξ)^2 ]=exp[−s^2 +^2 sξ]
=
∑∞
n= 0
Hn(ξ)sn
n!
(1)
Differentiate (1) first with respect toξand then with respect to s.
∂T
∂ξ
= 2 sexp(−s^2 + 2 sξ)=
∑
n
2 sn+^1 Hn(ξ)
n!
=
∑
n
snHn′(ξ)
n!
(2)
Equating equal powers of s
Hn′=^2 nHn− 1 (3)
∂T
∂s
=ξ(− 2 s+ 2 ξ)exp(−s^2 + 2 sξ)=
∑
n
(− 2 s+ 2 ξ)snHn(ξ)=
∑
n
sn−^1 Hn(ξ)
(n−1)!
(4)
Equating equal powers of s in the sums of equations
Hn+ 1 = 2 ξHn− 2 nHn− 1 (5)
It is seen that (5) satisfies the Hermite’s equation