68 1 Mathematical Physics
=
λAλBNA^0
(λB−λA)[
1
λA{
1
s−
1
s+λA}
−
1
λB{
1
s−
1
s+λB}]
=N 10
[
1
s−
λB
(λB−λA)1
(s+λA)+
λA
(λB−λA)1
(s+λB)]
∴Nc=NA^0[
1 +
1
λB−λA(λAexp(−λBt)−λBexp(−λAt))]
1.74 (a)L{eax}=
∫∞
0e−sxeaxdx=∫∞
0e−(s−a)xdx=1
s−a,ifs>a(b) and (c). From part (a),L(eax)=s−^1 aReplaceabyai
L(eiax)=L{cosax+isinax}
=L{cosax}+iL{sinax}
=1
s−ai=
s+ai
s^2 +a^2=
s
s^2 +a^2+
ia
s^2 +a^2
Equating real and imaginary parts:
L{cosax}=s
s^2 +a^2;L{sinax}=a
x^2 +a^21.3.10 Special Functions
1.75 ExpressHnin terms of a generating functionT(ξ,s).
T(ξ,s)=exp[ξ^2 −(s−ξ)^2 ]=exp[−s^2 +^2 sξ]=∑∞
n= 0Hn(ξ)sn
n!(1)
Differentiate (1) first with respect toξand then with respect to s.
∂T
∂ξ= 2 sexp(−s^2 + 2 sξ)=∑n2 sn+^1 Hn(ξ)
n!=
∑
nsnHn′(ξ)
n!(2)
Equating equal powers of s
Hn′=^2 nHn− 1 (3)
∂T
∂s=ξ(− 2 s+ 2 ξ)exp(−s^2 + 2 sξ)=∑
n(− 2 s+ 2 ξ)snHn(ξ)=∑
nsn−^1 Hn(ξ)
(n−1)!
(4)
Equating equal powers of s in the sums of equations
Hn+ 1 = 2 ξHn− 2 nHn− 1 (5)It is seen that (5) satisfies the Hermite’s equation