Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

172 Higher Engineering Mathematics


Solving the simultaneous equations gives:

A=

X+Y
2

andB=

X−Y
2
Thus sin(A+B)+sin(A−B)=2sinAcosBbecomes,

sinX+sinY=2sin

(
X+Y
2

)
cos

(
X−Y
2

)
(5)

Similarly,

sinX−sinY=2cos

(
X+Y
2

)
sin

(
X−Y
2

)
(6)

cosX+cosY=2cos

(
X+Y
2

)
cos

(
X−Y
2

)
(7)

cosX−cosY=−2sin

(
X+Y
2

)
sin

(
X−Y
2

)
(8)

Problem 19. Express sin5θ+sin3θas a product.

From equation (5),

sin5θ+sin3θ=2sin

(
5 θ+ 3 θ
2

)
cos

(
5 θ− 3 θ
2

)

=2sin4θcosθ

Problem 20. Express sin7x−sinxas a product.

From equation (6),

sin7x−sinx=2cos

(
7 x+x
2

)
sin

(
7 x−x
2

)

=2cos4xsin3x

Problem 21. Express cos2t−cos5tas a
product.

From equation (8),

cos2t−cos5t=−2sin

(
2 t+ 5 t
2

)
sin

(
2 t− 5 t
2

)

=−2sin

7
2

tsin

(

3
2

t

)
=2sin

7
2

tsin

3
2

t
(
since sin

(

3
2

t

)
=−sin

3
2

t

)

Problem 22. Show that

cos6x+cos2x
sin6x+sin2x

=cot 4x.

From equation (7),
cos6x+cos2x=2cos4xcos2x

From equation (5),
sin6x+sin2x=2sin4xcos2x

Hence
cos6x+cos 2x
sin6x+sin2x

=

2cos4xcos2x
2sin4xcos2x

=

cos4x
sin4x

=cot 4x

Problem 23. Solve the equation
cos4θ+cos2θ=0forθin the range 0◦≤θ≤ 360 ◦.

From equation (7),
cos4θ+cos2θ=2cos

(
4 θ+ 2 θ
2

)
cos

(
4 θ− 2 θ
2

)

Hence, 2cos3θcosθ= 0
Dividing by 2 gives: cos3θcosθ= 0
Hence, either cos3θ=0orcosθ= 0

Thus, 3 θ=cos−^1 0orθ=cos−^10

from which, 3θ= 90 ◦or 270◦or 450◦or 630◦or
810 ◦or 990◦
and θ= 30 ◦, 90 ◦, 150 ◦, 210 ◦, 270 ◦or 330◦

Now try the following exercise

Exercise 76 Further problems on changing
sums or differences of sines and cosines into
products
In Problems 1 to 5, express as products:


  1. sin3x+sinx [2sin2xcosx]
    2.^12 (sin 9θ−sin7θ) [cos8θsinθ]

  2. cos5t+cos3t [2cos4tcost]
    4.^18 (cos 5t−cost)


[
−^14 sin3tsin2t

]

5.^12


(
cos

π
3

+cos

π
4

) [
cos

7 π
24

cos

π
24

]


  1. Show that:
    (a)


sin4x−sin2x
cos4x+cos2x

=tanx

(b)^12 {sin( 5 x−α)−sin(x+α)}
=cos3xsin( 2 x−α)
Free download pdf