Compound angles 171
(iv) cos(A+B)−cos(A−B)=−2sinAsinBi.e. sinAsinB=−^12 [cos(A+B)−cos(A−B)] (4)Problem 15. Express sin4xcos3xas a sum or
difference of sines and cosines.From equation (1),
sin4xcos3x=^12 [sin( 4 x+ 3 x)+sin( 4 x− 3 x)]
=^12 (sin7x+sinx)Problem 16. Express 2cos5θsin2θas a sum or
difference of sines or cosines.From equation (2),
2cos5θsin2θ= 2
{
1
2[sin( 5 θ+ 2 θ)−sin( 5 θ− 2 θ)]}=sin7θ−sin3θProblem 17. Express 3cos4tcostas a sum or
difference of sines or cosines.From equation (3),
3cos4tcost= 3
{
1
2[cos( 4 t+t)+cos( 4 t−t)]}=3
2(cos5t+cos3t)Thus, if the integral
∫
3cos4tcostdtwas required (for
integration see Chapter 37), then
∫
3cos4tcostdt=
∫
3
2(cos 5t+cos3t)dt=3
2[
sin5t
5+sin3t
3]
+cProblem 18. In an alternating current circuit,
voltagev=5sinωtand currenti=10sin(ωt−
π/ 6 ). Find an expression for the instantaneous
powerpat timetgiven thatp=vi, expressing the
answer as a sum or difference of sines and cosines.p=vi=(5sinωt)[10sin(ωt−π/ 6 )]
=50sinωtsin(ωt−π/ 6 )From equation (4),50sinωtsin(ωt−π/ 6 )=( 50 )[
−^12{
cos(ωt+ωt−π/ 6 )−cos[
ωt−(ωt−π/ 6 )]}]=− 25 {cos( 2 ωt−π/ 6 )−cosπ/ 6 }i.e. instantaneous power,
p=25[cosπ/ 6 −cos(2ωt−π/6)]Now try the following exerciseExercise 75 Further problems on changing
products of sines and cosines into sums or
differences
In Problems 1 to 5, express as sums or differences:- sin7tcos2t
[ 1
2 (sin9t+sin5t)]- cos8xsin2x
[ 1
2 (sin10x−sin6x)]- 2sin7tsin3t [cos4t−cos 10t]
- 4cos3θcosθ [2(cos4θ+cos2θ)]
- 3sin
π
3cosπ
6[
3
2(
sinπ
2+sinπ
6)]- Determine
∫
2sin3tcos[tdt.
−
cos4t
4−
cos2t
2+c]- Evaluate
∫ π
2
04cos5xcos2xdx.[
−20
21]- Solve the equation: 2sin2φsinφ=cosφin
 the rangeφ=0toφ= 180 ◦.
 [30◦,90◦or 150◦]
17.5 Changing sums or differences of
sines and cosines into products
In the compound-angle formula let,(A+B)=Xand
(A−B)=Y