4 Higher Engineering Mathematics
√
t(√
t+ 3
√
t)
= 2√
ti.e.√
t+ 3 = 2√
tand 3 = 2√
t−√
ti.e. 3 =√
tand 9 =t(b) Transposition of formulaeProblem 15. Transpose the formulav=u+ft
m
to makefthe subject.u+ft
m=vfrom which,ft
m=v−uand m(
ft
m)
=m(v−u)i.e. ft=m(v−u)and f=m
t(v−u)Problem 16. The impedance of an a.c. circuit is
given byZ=√
R^2 +X^2. Make the reactanceXthe
subject.
√
R^2 +X^2 =Zand squaring both sides gives
R^2 +X^2 =Z^2 ,from which,X^2 =Z^2 −R^2 andreactanceX=√
Z^2 −R^2Problem 17. Given thatD
d=√(
f+p
f−p)
,expresspin terms ofD,dandf.Rearranging gives:√(
f+p
f−p)
=D
dSquaring both sides gives:f+p
f−p=D^2
d^2
‘Cross-multiplying’ gives:
d^2 (f+p)=D^2 (f−p)
Removing brackets gives:d^2 f+d^2 p=D^2 f−D^2 pRearranging gives: d^2 p+D^2 p=D^2 f−d^2 fFactorizing gives: p(d^2 +D^2 )=f(D^2 −d^2 )and p=f(D^2 −d^2 )
(d^2 +D^2 )Now try the following exerciseExercise 3 Further problems on simple
equations and transposition of formulaeIn problems 1 to 4 solve the equations- 3x− 2 − 5 x= 2 x−4.
[ 1
2]- 8+ 4 (x− 1 )− 5 (x− 3 )= 2 ( 5 − 2 x).
[−3]
3.1
3 a− 2+1
5 a+ 3=0.[
−^18]4.3√
t
1 −√
t=−6. [4]- Transposey=
3 (F−f)
L.forf.
[
f=3 F−yL
3or f=F−yL
3]- Makelthe subject oft= 2 π
√
1
g.
[
l=t^2 g
4 π^2]- Transposem=
μL
L+rCRforL.
[
L=mrC R
μ−m]- Makerthe subject of the formula
x
y
=1 +r^2
1 −r^2.[
r=√(
x−y
x+y)](c) Simultaneous equationsProblem 18. Solve the simultaneous equations:
7 x− 2 y= 26 (1)6 x+ 5 y= 29. (2)