294 Higher Engineering Mathematics
Note that the differential coefficient isnotobtained by
merely differentiating each term in turn and then divid-
ing the numerator by the denominator. The quotient
formulamustbe used when differentiating quotients.Problem 15. Determine the differential
coefficient ofy=tanax.y=tanax=sinax
cosax. Differentiation of tanax is thus
treated as a quotient withu=sinaxandv=cosax
dy
dx=vdu
dx−udv
dx
v^2=(cosax)(acosax)−(sinax)(−asinax)
(cosax)^2=acos^2 ax+asin^2 ax
(cosax)^2
=a(cos^2 ax+sin^2 ax)
cos^2 ax
=
a
cos^2 ax,sincecos^2 ax+sin^2 ax= 1
(see Chapter 15)Hencedy
dx=asec^2 ax since sec^2 ax=1
cos^2 ax(see
Chapter 11).Problem 16. Find the derivative ofy=secax.y=secax=1
cosax(i.e. a quotient). Letu=1and
v=cosaxdy
dx=vdu
dx
−udv
dx
v^2=(cosax)( 0 )−( 1 )(−asinax)
(cosax)^2=asinax
cos^2 ax=a(
1
cosax)(
sinax
cosax)i.e.dy
dx=asecaxtanaxProblem 17. Differentiatey=te^2 t
2costThe functionte^2 t
2costis a quotient, whose numerator is a
product.Letu=te^2 tandv=2costthen
du
dt=(t)(2e^2 t)+(e^2 t)( 1 )anddv
dt=−2sintHencedy
dx=vdu
dx−udv
dx
v^2=(2cost)[2te^2 t+e^2 t]−(te^2 t)(−2sint)
(2cost)^2=4 te^2 tcost+2e^2 tcost+ 2 te^2 tsint
4cos^2 t=2e^2 t[2tcost+cost+tsint]
4cos^2 ti.e.dy
dx=e^2 t
2cos^2 t(2tcost+cost+tsint)Problem 18. Determine the gradient of the curvey=5 x
2 x^2 + 4at the point(
√
3 ,√
3
2)
.Lety= 5 xandv= 2 x^2 + 4dy
dx=vdu
dx−udv
dx
v^2=( 2 x^2 + 4 )( 5 )−( 5 x)( 4 x)
( 2 x^2 + 4 )^2=10 x^2 + 20 − 20 x^2
( 2 x^2 + 4 )^2=20 − 10 x^2
( 2 x^2 + 4 )^2At the point(
√
3 ,√
3
2)
,x=√
3,hence the gradient=dy
dx=20 − 10 (√
3 )^2
[2(√
3 )^2 +4]^2=20 − 30
100=−1
10Now try the following exerciseExercise 117 Further problemson
differentiating quotientsIn Problems 1 to 7, differentiate the quotients with
respect to the variable.1.sinx
x[
xcosx−sinx
x^2]