318 Higher Engineering Mathematics
29.4 Further worked problems on
differentiation of parametric
equations
Problem 5. The equation of the normal drawn to
a curve at point(x 1 ,y 1 )is given by:y−y 1 =−1
dy 1
dx 1(x−x 1 )Determine the equation of the normal drawn to the
astroidx=2cos^3 θ,y=2sin^3 θat the pointθ=π
4x=2cos^3 θ,hencedx
dθ=−6cos^2 θsinθy=2sin^3 θ,hencedy
dθ=6sin^2 θcosθFrom equation (1),dy
dx=dy
dθ
dx
dθ=6sin^2 θcosθ
−6cos^2 θsinθ=−sinθ
cosθ=−tanθWhenθ=π
4,dy
dx=−tanπ
4=− 1x 1 =2cos^3π
4= 0 .7071 andy 1 =2sin^3π
4= 0. 7071Hence,the equation of the normal is:y− 0. 7071 =−1
− 1(x− 0. 7071 )i.e. y− 0. 7071 =x− 0. 7071
i.e. y=xProblem 6. The parametric equations for a
hyperbola arex=2secθ,y=4tanθ.Evaluate(a)dy
dx(b)d^2 y
dx^2, correct to 4 significant figures,
whenθ=1radian.(a) x=2secθ, hencedx
dθ=2secθtanθy=4tanθ, hencedy
dθ=4sec^2 θFrom equation (1),dy
dx=dy
dθ
dx
dθ=4sec^2 θ
2secθtanθ=2secθ
tanθ=2(
1
cosθ)(
sinθ
cosθ) =2
sinθor 2cosecθWhenθ=1rad,dy
dx=2
sin1=2.377, correct to 4
significant figures.(b) From equation (2),d^2 y
dx^2=d
dθ(
dy
dx)dx
dθ=d
dθ(2cosecθ)
2secθtanθ=−2cosecθcotθ
2secθtanθ=−(
1
sinθ)(
cosθ
sinθ)(
1
cosθ)(
sinθ
cosθ)=−(
cosθ
sin^2 θ)(
cos^2 θ
sinθ)=−cos^3 θ
sin^3 θ=−cot^3 θWhen θ=1rad,
d^2 y
dx^2=−cot^31 =−
1
(tan1)^3
=−0.2647, correct to 4 significant figures.Problem 7. When determining the surface
tension of a liquid, the radius of curvature,ρ,of
part of the surface is given by:ρ=√
√
√
√[
1 +(
dy
dx) 2 ]^3d^2 y
dx^2
Find the radius of curvature of the part of the
surface having the parametric equationsx= 3 t^2 ,
y= 6 tat the pointt=2.