Differentiation of parametric equations 317
Determine the equation of the tangent drawn to the
parabolax= 2 t^2 ,y= 4 tat the pointt.At pointt,x 1 = 2 t^2 , hence
dx 1
dt= 4 tand y 1 = 4 t, hence
dy 1
dt= 4From equation (1),
dy
dx=dy
dt
dx
dt=4
4 t=1
tHence, the equation of the tangent is:
y− 4 t=1
t(
x− 2 t^2)Problem 4. The parametric equations of a cycloid
arex= 4 (θ−sinθ),y= 4 ( 1 −cosθ). Determine(a)dy
dx(b)d^2 y
dx^2(a) x= 4 (θ−sinθ),hencedx
dθ= 4 −4cosθ= 4 ( 1 −cosθ)y= 4 ( 1 −cosθ), hencedy
dθ=4sinθ
From equation (1),dy
dx=dy
dθ
dx
dθ=4sinθ
4 ( 1 −cosθ)=sinθ
( 1 −cosθ)(b) From equation (2),
d^2 y
dx^2=d
dθ(
dy
dx)dx
dθ=d
dθ(
sinθ
1 −cosθ)4 ( 1 −cosθ)=( 1 −cosθ)(cosθ)−(sinθ)(sinθ)
( 1 −cosθ)^2
4 ( 1 −cosθ)=cosθ−cos^2 θ−sin^2 θ
4 ( 1 −cosθ)^3=cosθ−(
cos^2 θ+sin^2 θ)4 ( 1 −cosθ)^3=cosθ− 1
4 ( 1 −cosθ)^3=−( 1 −cosθ)
4 ( 1 −cosθ)^3=− 1
4 ( 1 −cosθ)^2Now try the following exerciseExercise 126 Further problemson
differentiation of parametric equations- Givenx= 3 t−1andy=t(t− 1 ), determine
dy
dx
in terms oft.[
1
3( 2 t− 1 )]- A parabola has parametric equations:x=t^2 ,
y= 2 t.Evaluate
dy
dxwhent= 0 .5. [2]- The parametric equations for an ellipse
arex=4cosθ,y=sinθ. Determine (a)
dy
dx
(b)d^2 y
dx^2.[
(a)−1
4cotθ(b)−1
16cosec^3 θ]- Evaluate
dy
dxat θ=π
6radians for the
hyperbola whose parametric equations are
x=3secθ,y=6tanθ.[4]- The parametric equations for a rectangular
hyperbola are x= 2 t, y=
2
t.Evaluatedy
dx
whent= 0 .40. [−6.25]The equation of a tangent drawn to a curve at
point(x 1 ,y 1 )is given by:y−y 1 =dy 1
dx 1(x−x 1 )Use this in Problems 6 and 7.- Determine the equation of the tangent drawn
to the ellipsex=3cosθ,y=2sinθatθ=
π
6.
[y=− 1. 155 x+4]- Determine the equation of the tangent drawn
to the rectangular hyperbolax= 5 t,y=
5
tat
t=2. [y=−1
4x+ 5]