Differentiation of implicit functions 321
du
dx=du
dy×dy
dx=d
dy(4ln5y)×dy
dx=4
ydy
dx(b) Letu=1
5e^3 θ−^2 , then, by the functionofa function
rule:du
dx=du
dθ×dθ
dx=d
dθ(
1
5e^3 θ−^2)
×dθ
dx=3
5e^3 θ−^2dθ
dxNow try the following exercise
Exercise 128 Further problems on
differentiating implicit functions
In Problems 1 and 2 differentiate the given func-
tions with respect tox.- (a) 3y^5 (b) 2cos4θ (c)
√ k ⎡ ⎢ ⎢ ⎣(a) 15 y^4dy
dx(b)−8sin4θdθ
dx
(c)1
2√
kdk
dx⎤
⎥
⎥
⎦- (a)
5
2ln3t (b)3
4e^2 y+^1 (c)2tan3y
⎡
⎢
⎣(a)5
2 tdt
dx(b)3
2e^2 y+^1dy
dx
(c)6sec^23 ydy
dx⎤
⎥
⎦- Differentiate the following with respect toy:
(a)3sin2θ(b) 4
√
x^3 (c)2
et
⎡
⎢
⎢
⎣(a)6cos2θdθ
dy(b) 6√
xdx
dy
(c)− 2
etdt
dy⎤
⎥
⎥
⎦- Differentiate the following with respect tou:
(a)2
( 3 x+ 1 )(b)3sec2θ(c)2
√
y⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
(a)− 6
( 3 x+ 1 )^2dx
du
(b)6sec2θtan2θdθ
du
(c)− 1
√
y^3dy
du⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦30.3 Differentiating implicit
functions containing products
and quotients
The product and quotient rules of differentiation must
be applied when differentiating functions containing
products and quotients of two variables.For example,d
dx(x^2 y)=(x^2 )d
dx(y)+(y)d
dx(x^2 ),by the product rule=(x^2 )(
1dy
dx)
+y( 2 x),by using equation (1)=x^2dy
dx+ 2 xyProblem 3. Determined
dx( 2 x^3 y^2 ).In the product rule of differentiation letu= 2 x^3 and
v=y^2.Thusd
dx( 2 x^3 y^2 )=( 2 x^3 )d
dx(y^2 )+(y^2 )d
dx( 2 x^3 )=( 2 x^3 )(
2 ydy
dx)
+(y^2 )( 6 x^2 )= 4 x^3 ydy
dx+ 6 x^2 y^2= 2 x^2 y(
2 x
dy
dx+ 3 y)Problem 4. Findd
dx(
3 y
2 x)
.In the quotient rule of differentiation letu= 3 yand
v= 2 x.