Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

342 Higher Engineering Mathematics


Problem 13. Determine
d
dx

[
cosh−^1


(x^2 + 1 )

]

Ify=cosh−^1 f(x),

dy
dx

=

f′(x)

[f(x)]^2 − 1

Ify=cosh−^1


(x^2 + 1 ),thenf(x)=


(x^2 + 1 )and
f′(x)=

1
2

(x+ 1 )−^1 /^2 ( 2 x)=

x

(x^2 + 1 )

Hence,

d
dx

[
cosh−^1


(x^2 + 1 )

]

=

x

(x^2 + 1 )
√[
(√
(x^2 + 1 )

) 2
− 1

]=

x

(x^2 + 1 )

(x^2 + 1 − 1 )

=

x

(x^2 + 1 )
x

=

1

(x^2 +1)

Problem 14. Show that

d
dx

[
tanh−^1

x
a

]
=
a
a^2 −x^2

and hence determine the differential

coefficient of tanh−^1

4 x
3

Ify=tanh−^1

x
a

then

x
a

=tanhyandx=atanhy

dx
dy

=asech^2 y=a( 1 −tanh^2 y),since
1 −sech^2 y=tanh^2 y

=a

[
1 −

(x
a

) 2 ]
=a

(
a^2 −x^2
a^2

)
=

a^2 −x^2
a

Hence

dy
dx

=

1
dx
dy

=

a
a^2 −x^2

Comparing tanh−^1
4 x
3

with tanh−^1
x
a

shows thata=
3
4

Hence

d
dx

[
tanh−^1

4 x
3

]
=

3

(^4
3
4

) 2
−x^2

=

3
4
9
16

−x^2

=

3
4
9 − 16 x^2
16

=

3
4

·

16
( 9 − 16 x^2 )

=

12
9 − 16 x^2

Problem 15. Differentiate cosech−^1 (sinhθ).

From Table 33.2(v),

d
dx

[cosech−^1 f(x)]=

−f′(x)
f(x)


[f(x)]^2 + 1

Hence

d

[cosech−^1 (sinhθ)]

=

−coshθ
sinhθ


[sinh^2 θ+1]

=

−coshθ
sinhθ


cosh^2 θ

sincecosh^2 θ−sinh^2 θ= 1

=

−coshθ
sinhθcoshθ

=

− 1
sinhθ

=−cosechθ

Problem 16. Find the differential coefficient of
y=sech−^1 ( 2 x− 1 ).

From Table 33.2(iv),

d
dx

[sech−^1 f(x)]=

−f′(x)
f(x)


1 −[f(x)]^2

Hence,

d
dx

[sech−^1 ( 2 x− 1 )]

=

− 2
( 2 x− 1 )


[1−( 2 x− 1 )^2 ]

=

− 2
( 2 x− 1 )


[1−( 4 x^2 − 4 x+ 1 )]

=

− 2
( 2 x− 1 )


( 4 x− 4 x^2 )

=

− 2
( 2 x− 1 )


[4x( 1 −x)]

=
− 2
( 2 x− 1 ) 2


[x( 1 −x)]

=
− 1
( 2 x− 1 )


[x(1−x)]

Problem 17. Show that
d
dx

[coth−^1 (sinx)]=secx.

From Table 33.2(vi),

d
dx

[coth−^1 f(x)]=

f′(x)
1 −[f(x)]^2
Free download pdf