Differentiation of inverse trigonometric and hyperbolic functions 343
Hence
d
dx[coth−^1 (sinx)]=cosx
[1−(sinx)^2 ]=cosx
cos^2 xsince cos^2 x+sin^2 x= 1=1
cosx=secxProblem 18. Differentiate
y=(x^2 − 1 )tanh−^1 x.Using the product rule,
dy
dx=(x^2 − 1 )(
1
1 −x^2)
+(tanh−^1 x)( 2 x)=−( 1 −x^2 )
( 1 −x^2 )+ 2 xtanh−^1 x= 2 xtanh−^1 x− 1Problem 19. Determine∫
dx
√
(x^2 + 4 ).Since
d
dx(
sinh−^1x
a)
=1
√
(x^2 +a^2 )then
∫
dx
√
(x^2 +a^2 )=sinh−^1x
a+cHence
∫
1
√
(x^2 + 4 )dx =∫
1
√
(x^2 + 22 )dx=sinh−^1x
2+cProblem 20. Determine∫
4
√
(x^2 − 3 )dx.Since
d
dx(
cosh−^1x
a)
=1
√
(x^2 −a^2 )then
∫
1
√
(x^2 −a^2 )dx=cosh−^1x
a+cHence
∫
4
√
(x^2 − 3 )dx= 4∫
1
√
[x^2 −(√
3 )^2 ]dx=4cosh−^1x
√
3+cProblem 21. Find∫
2
( 9 − 4 x^2 )dx.Since tanh−^1x
a=a
a^2 −x^2then∫
a
a^2 −x^2dx=tanh−^1x
a+ci.e.∫
1
a^2 −x^2dx=1
atanh−^1x
a+cHence∫
2
( 9 − 4 x^2 )dx= 2∫
1
4( 9
4 −x2 )dx=1
2∫
1
[(
3
2) 2
−x^2]dx=1
2[
1
( 3
2)tanh−^1x
( 3
2)+c]i.e.∫
2
( 9 − 4 x^2 )dx=1
3tanh−^12 x
3+cNow try the following exerciseExercise 137 Further problems on
differentiation of inverse hyperbolic
functionsIn Problems 1 to 11, differentiate with respect to
the variable.- (a) sinh−^1
x
3(b) sinh−^14 x
[
(a)1
√
(x^2 + 9 )(b)4
√
( 16 x^2 + 1 )]- (a) 2 cosh−^1
t
3(b)1
2cosh−^12 θ
[
(a)2
√
(t^2 − 9 )(b)1
√
( 4 θ^2 − 1 )]- (a) tanh−^1
2 x
5(b) 3 tanh−^13 x
[
(a)10
25 − 4 x^2(b)9
( 1 − 9 x^2 )]- (a) sech−^1
3 x
4(b)−1
2sech−^12 x
[
(a)− 4
x√
( 16 − 9 x^2 )(b)1
2 x√
( 1 − 4 x^2 )]