Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Chapter 35


Total differential, rates of


change and small changes


35.1 Total differential


In Chapter 34, partial differentiation is introduced for
the case where only one variable changes at a time,
the other variables being kept constant. In practice,
variables may all be changing at the same time.
Ifz=f(u,v,w,...), then thetotal differential,dz,
is given by the sum of the separate partial differentials
ofz,


i.e.dz=
∂z
∂u


du+

∂z
∂v

dv+

∂z
∂w

dw+··· (1)

Problem 1. Ifz=f(x,y)andz=x^2 y^3 +

2 x
y

+1,
determine the total differential, dz.

The total differential is the sum of the partial differen-
tials,


i.e. dz=


∂z
∂x

dx+

∂z
∂y

dy

∂z
∂x

= 2 xy^3 +

2
y

(i.e.yis kept constant)

∂z
∂y

= 3 x^2 y^2

2 x
y^2

(i.e.xis kept constant)

Hence dz=


(
2 xy^3 +

2
y

)
dx+

(
3 x^2 y^2 −

2 x
y^2

)
dy

Problem 2. Ifz=f(u,v,w)and
z= 3 u^2 − 2 v+ 4 w^3 v^2 find the total differential, dz.

The total differential

dz=

∂z
∂u

du+

∂z
∂v

dv+

∂z
∂w

dw

∂z
∂u

= 6 u(i.e.vandware kept constant)

∂z
∂v

=− 2 + 8 w^3 v

(i.e.uandware kept constant)
∂z
∂w

= 12 w^2 v^2 (i.e.uandvare kept constant)

Hence
dz= 6 udu+(8vw^3 −2) dv+(12v^2 w^2 )dw

Problem 3. The pressurep, volumeVand
temperatureTof a gas are related bypV=kT,
wherekis a constant. Determine the total
differentials (a) dpand (b) dTin terms ofp,V
andT.

(a) Total differential dp=

∂p
∂T

dT+

∂p
∂V

dV.

Since pV=kTthenp=

kT
V
hence

∂p
∂T

=

k
V

and

∂p
∂V

=−

kT
V^2
Thus dp =

k
V

dT−

kT
V^2

dV
Free download pdf