Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Integration using algebraicsubstitutions 393


be a lengthy process, and thus an algebraic substitution
is made.


Letu=( 2 x− 5 )then
du
dx


=2anddx=
du
2
Hence



( 2 x− 5 )^7 dx=


u^7

du
2

=

1
2


u^7 du

=

1
2

(
u^8
8

)
+c=

1
16

u^8 +c

Rewritinguas( 2 x− 5 )gives:



(2x−5)^7 dx=

1
16

(2x−5)^8 +c

Problem 3. Find


4
( 5 x− 3 )

dx.

Letu=( 5 x− 3 )then


du
dx

=5anddx=

du
5
Hence



4
( 5 x− 3 )

dx=


4
u

du
5

=

4
5


1
u

du

=

4
5

lnu+c=

4
5

ln(5x−3)+c

Problem 4. Evaluate

∫ 1
0 2e

6 x− (^1) dx, correct to
4 significant figures.
Letu= 6 x−1then
du
dx
=6anddx=
du
6
Hence

2e^6 x−^1 dx=

2eu
du
6


1
3

eudu


1
3
eu+c=
1
3
e^6 x−^1 +c
Thus
∫ 1
0
2e^6 x−^1 dx=
1
3
[e^6 x−^1 ]^10 =
1
3
[e^5 −e−^1 ]= 49. 35 ,
correct to 4 significant figures.
Problem 5. Determine

3 x( 4 x^2 + 3 )^5 dx.
Letu=( 4 x^2 + 3 )then
du
dx
= 8 xand dx=
du
8 x
Hence

3 x( 4 x^2 + 3 )^5 dx=

3 x(u)^5
du
8 x


3
8

u^5 du,by cancelling
The original variable ‘x’ has been completely removed
and the integral is now only in terms ofuand is a
standard integral.
Hence
3
8

u^5 du=
3
8
(
u^6
6
)
+c


1
16
u^6 +c=
1
16
(4x^2 +3)^6 +c
Problem 6. Evaluate
∫ π
6
0
24sin^5 θcosθdθ.
Letu=sinθthen
du

=cosθand dθ=
du
cosθ
Hence

24sin^5 θcosθdθ=

24 u^5 cosθ
du
cosθ
= 24

u^5 du,by cancelling
= 24
u^6
6
+c= 4 u^6 +c= 4 (sinθ)^6 +c
=4sin^6 θ+c
Thus
∫ π
6
0
24sin^5 θcosθdθ=[4sin^6 θ]
π
6
0
= 4
[(
sin
π
6
) 6
−(sin 0)^6
]
= 4
[(
1
2
) 6
− 0
]


1
16
or 0. 0625

Free download pdf