Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Integration using trigonometric and hyperbolic substitutions 407



2 x− 3

(x^2 − 9 )


dx=


2 x

(x^2 − 9 )

dx



3

(x^2 − 9 )

dx

The first integral is determined using the algebraic sub-
stitutionu=(x^2 − 9 ), and the second integral is of the


form



1

(x^2 −a^2 )

dx(see Problem 24)

Hence



2 x

(x^2 − 9 )

dx−


3

(x^2 − 9 )

dx

= 2


(x^2 −9)−3cosh−^1

x
3

+c

Problem 26.

∫ √
(x^2 −a^2 )dx.

Letx=acoshθthen


dx

=asinhθand

dx=asinhθdθ


Hence

∫ √
(x^2 −a^2 )dx

=

∫ √
(a^2 cosh^2 θ−a^2 )(asinhθdθ)

=

∫ √
[a^2 (cosh^2 θ− 1 )](asinhθdθ)

=

∫ √
(a^2 sinh^2 θ)(asinhθdθ)

=a^2


sinh^2 θdθ=a^2

∫(
cosh 2θ− 1
2

)

since cosh2θ= 1 +2sinh^2 θ
from Table 5.1, page 45,

=

a^2
2

[
sinh2θ
2

−θ

]
+c

=

a^2
2

[sinhθcoshθ−θ]+c,

since sinh2θ=2sinhθcoshθ

Sincex=acoshθthen coshθ=


x
a

and

θ=cosh−^1


x
a

Also, since cosh^2 θ−sinh^2 θ=1, then


sinhθ=


(cosh^2 θ− 1 )

=

√[
(x
a

) 2
− 1

]
=


(x^2 −a^2 )
a

Hence

∫ √
(x^2 −a^2 )dx

=

a^2
2

[√
(x^2 −a^2 )
a

(x
a

)
−cosh−^1

x
a

]
+c

=
x
2


(x^2 −a^2 )−
a^2
2

cosh−^1
x
a

+c

Problem 27. Evaluate

∫ 3

2


(x^2 − 4 )dx.

∫ 3

2


(x^2 − 4 )dx=

[
x
2


(x^2 − 4 )−

4
2

cosh−^1

x
2

] 3

2
from Problem 26, whena=2,

=

(
3
5


5 −2cosh−^1

3
2

)

−( 0 −2cosh−^11 )

Since cosh−^1

x
a

=ln

{
x+


(x^2 −a^2 )
a

}
then

cosh−^1

3
2

=ln

{
3 +


( 32 − 22 )
2

}

=ln2. 6180 = 0. 9624

Similarly, cosh−^11 = 0

Hence

∫ 3

2


(x^2 − 4 )dx

=

[
3
2


5 − 2 ( 0. 9624 )

]
−[0]

= 1. 429 , correct to 4 significant figures.

Now try the following exercise

Exercise 161 Further problemson
integration using thecoshθsubstitution


  1. Find



1

(t^2 − 16 )

dt.

[
cosh−^1

x
4

+c

]
Free download pdf