406 Higher Engineering Mathematics
=a^2
2(
θ+sinh2θ
2)
+c=a^2
2[θ+sinhθcoshθ]+c,since sinh2θ=2sinhθcoshθSincex=asinhθ,thensinhθ=x
aandθ=sinh−^1x
a
Also since cosh^2 θ−sinh^2 θ= 1then coshθ=√
( 1 +sinh^2 θ)=√[
1 +(x
a) 2 ]
=√(
a^2 +x^2
a^2)=√
(a^2 +x^2 )
aHence∫ √
(x^2 +a^2 )dx=a^2
2[
sinh−^1x
a+(x
a)√(x (^2) +a (^2) )
a
]
+c
a^2
2
sinh−^1
x
a
- x
2
√
(x^2 +a^2 )+c
Now try the following exercise
Exercise 160 Further problems on
integration using thesinhθsubstitution
- Find
∫
2
√
(x^2 + 16 )dx.[
2sinh−^1x
4+c]- Find
∫
3
√
( 9 + 5 x^2 )dx.
[
3
√
5sinh−^1√
5
3
x+c]- Find
∫ √
(x^2 + 9 )dx.
[
9
2sinh−^1x
3+x
2√
(x^2 + 9 )+c]- Find
∫ √
( 4 t^2 + 25 )dt.
[
25
4sinh−^1
2 t
5+
t
2√
( 4 t^2 + 25 )+c]- Evaluate
∫ 304
√
(t^2 + 9 )dt. [3.525]- Evaluate
∫ 10√
( 16 + 9 θ^2 )dθ. [4.348]40.8 Worked problems on integration
using thecoshθsubstitution
Problem 24. Determine∫
1
√
(x^2 −a^2 )dx.Letx=acoshθthendx
dθ=asinhθand
dx=asinhθdθHence∫
1
√
(x^2 −a^2 )dx=∫
1
√
(a^2 cosh^2 θ−a^2 )(asinhθdθ)=∫
asinhθdθ
√
[a^2 (cosh^2 θ− 1 )]=∫
asinhθdθ
√
(a^2 sinh^2 θ),since cosh^2 θ−sinh^2 θ= 1=∫
asinhθdθ
asinhθ=∫
dθ=θ+c=cosh−^1x
a+c,sincex=acoshθItisshownonpage339thatcosh−^1x
a=ln{
x+√
(x^2 −a^2 )
a}which provides as alternative solution to
∫
1
√
(x^2 −a^2 )dxProblem 25. Determine∫
2 x− 3
√
(x^2 − 9 )dx.